欢迎来到天天文库
浏览记录
ID:40405529
大小:1.96 MB
页数:373页
时间:2019-08-01
《The Hodge-Arakelov Theory of Elliptic Curves》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TheHodge-ArakelovTheoryofEllipticCurves:GlobalDiscretizationofLocalHodgeTheoriesbyShinichiMochizukiSeptember1999TableofContentsIntroduction§1.StatementoftheMainResults§2.TechnicalRoots:theWorkofMumfordandZhang§3.ConceptualRoots:theSearchforaGlobalHodgeTheory§3.1.From
2、AbsoluteDifferentiationtoComparisonIsomorphisms§3.2.AFunction-TheoreticComparisonIsomorphism§3.3.TheMeaningofNonlinearity§3.4.HodgeTheoryatFiniteResolution§3.5.RelationshiptoOrdinaryFrobeniusLiftingsandAnabelianVarieties§4.GuidetotheText§5.FutureDirections§5.1.Gaussia
3、nPolesandtheThetaConvolution§5.2.HigherDimensionalAbelianVarietiesandHyperbolicCurvesChapterI:TorsorsinArakelovTheory§0.Introduction§1.ArakelovTheoryinGeometricDimensionZero§2.DefinitionandFirstPropertiesofTorsors§3.SplittingswithBoundedDenominators§4.ExamplesfromGeom
4、etryChapterII:TheGaloisActiononTorsionPoints§0.Introduction§1.SomeElementaryGroupTheory§2.TheHeightofanEllipticCurve§3.TheGaloisActionontheTorsionofaTateCurve§4.AnEffectiveEstimateoftheImageofGalois1ChapterIII:TheUniversalExtensionofaLogEllipticCurve§0.Introduction§1.
5、DefinitionoftheUniversalExtension§2.CanonicalSplittingatInfinity§3.CanonicalSplittingsintheComplexCase§4.Hodge-TheoreticInterpretationoftheUniversalExtension§5.AnalyticContinuationoftheCanonicalSplitting§6.HigherSchottky-WeierstrassZetaFunctions§7.CanonicalSchottky-Wei
6、erstrassZetaFunctionsChapterIV:ThetaGroupsandThetaFunctions§0.Introduction§1.Mumford’sAlgebraicThetaFunctions§2.ThetaActionsandtheSchottkyUniformization§3.TwistedSchottky-WeierstrassZetaFunctions§4.Zhang’sTheoryofMetrizedLineBundles§5.ThetaGroupsandMetrizedLineBundle
7、sChapterV:TheEvaluationMap§0.Introduction§1.ConstructionofCertainMetrizedLineBundles§2.TheDefinitionoftheEvaluationMap§3.ExtensionoftheEtale-IntegralStructure§4.LinearRelationsAmongHigherSchottky-WeierstrassZetaFunctions§5.TheDeterminantoftheEvaluationMap§6.TheGeneric
8、CaseChapterVI:TheScheme-TheoreticComparisonTheorem§0.Introduction§1.DefinitionofaNewIntegralStructureatInfinity§2.CompatibilitywithBa
此文档下载收益归作者所有