欢迎来到天天文库
浏览记录
ID:14601133
大小:34.50 KB
页数:4页
时间:2018-07-29
《椭圆的定义及标准方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《椭圆的定义及标准方程》教学设计教材分析1、《椭圆及其标准方程》是在学生学习了曲线和方程及圆的有关知识以后学习的第二种圆锥曲线,因此这一节的教学既可以对前面所学知识情况进行检查,又可以为进一步学习其它两种圆锥曲线打好基础.据此制订了教学目标1;在图形由圆变化到椭圆的过程中蕴涵着运动变化和从量变到质变的哲学思想,通过学生的观察、猜想到验证,既可以让学生体会圆与椭圆两种曲线的内在联系,又为今后的学习做了铺垫,据此制定了目标2,3.2、平面解析几何研究的主要问题(1)据已知条件,求出平面曲线的方程;(2)通过方程研究平面曲线的性质.在椭圆的教学过程
2、中,应注意强化学生以上两方面的研究意识,具体教学椭圆的标准方程时,要注意:(1)把椭圆的位置特征与标准方程的形成统一起来,椭圆的位置由其中心的位置和焦点的位置确定.(2)求椭圆的标准方程包括“定位”和“定量”两个方面.“定位”是指确定椭圆与坐标系的相对位置,在中心是原点的前提下,确定焦点位于那条坐标轴上,以判断方程的形式;“定量”则是指确定的具体数值,常用待定系数法.(3)使学生理解取椭圆的对称轴为坐标轴的原因.教学目标1、知识目标(1)体会并能说出椭圆及其焦点和焦距的定义;(2)让学生经历推出椭圆标准方程的过程;(3)能根据所给条件,准确写
3、出椭圆的标准方程;(4)初步了解椭圆的一些实际应用.2、能力目标(1)巩固求曲线方程的步骤与方法.进一步熟练用代数方法(坐标法、方程观点)讨论图形的性质,再一次感受用运动变化的观点研究问题等;(2)进一步引导学生观察、联想,注重培养学生划归的意识和转化的能力、自主学习、探索发现能力.3、情感目标(1)帮助学生树立运动变化的观点,培养创新意识、协作和进取精神;(2)渗透数学“对称美”、“简洁美”和“数形结合”思想.教学重点与难点引导学生在自主探索和合作交流中,理解椭圆的定义及其标准方程是本节重点,让学生经历、体验、探索椭圆标准方程的推导过程是难
4、点.教学方法与手段现代建构主义理论认为数学不是一种“授予—吸收”的过程,而是学习者主动的建构活动,教师不应被看成“知识的授予者”而应当成为学生学习活动的促进者.本节课利用画板、板书演示和多媒体教学,以创设问题情境为主线索,通过学生之间、师生之间相互交流和协商的方式展开教学.例题、练习题的解决,以学生为主,进一步提高学生的探究能力,培养创新意识.教学过程设计1、创设情境,导入新课电脑演示:神舟六号上天的轨道.教师提问:根据多媒体演示,请你将实际问题抽象成数学模型,观察各实例中共有的平面图形是什么?学生经过思考能答出“椭圆”.教师适时点题:椭圆是
5、一个很美的图形,在实际生活中是很常见的,例如很多物体的横截面的轮廓线是椭圆,可见学习这种曲线的有关知识是十分必要的.今天,我们研究§8.1椭圆的标准方程(第一课时).教师提问:请学生回忆圆的定义,并动手画圆.(课前要求学生每人准备一块硬纸板,两个图钉及一根细绳)动手实践:让学生和教师一起动手操作,观察曲线的形状,并思考两个问题.操作:截取一定长度的细绳,将绳的两端固定在画板的F1和F2两点如图1,当绳长大于F1和F2两点的距离时,用一支铅笔的尖端轻轻地将绳拉紧,使笔尖在画板上缓慢的移动一周.教师提问:(1)动点是在怎样的条件下运动的?(2)动
6、点运动出的轨迹是什么?学生一般能答出:动点是在“到两个定点距离之和等于定值”这一条件下运动的,轨迹是椭圆.2、观察思考,形成概念教师提问:请同学们想一想,是否到两个定点距离之和等于定值的点的轨迹就一定是椭圆呢?把平面内与两个定点距离之和等于定值的点的轨迹叫做椭圆,(设计意图:当学生经历了思考、讨论的过程,形成抽象概念,尝试述出定义之后;或者得出对命题的猜想并进而寻求论证思路,得出证实为定理的证明之后;或者引导学生分析、解决课上所举例题之后,注意提醒学生及时作出问题得以解决的经验小结.也就是小结建立的新概念、发现与论证的新定理、解出的新例题中,
7、都用了哪些已知的概念、已知的公理和定理、公式、法则、较常用的数学思想方法;为什么要用这些已知的知识;怎样想到要用这些已知的知识等等.这样的小结,不仅可使学生对所学的知识,能加深理解、能加强记忆,而且使他们的能力,尤其是联想能力,概括能力,能得以更充分的培养.)3、自主探究,解决问题根据这个定义,请同学们按照求曲线方程的步骤及方法来推导椭圆的方程.教师巡回辅导时,注意提醒学生:建立直角坐标系一般应符合简单和谐化的原则,如使关键点的坐标、关键几何量(距离、直线的斜率等)的表达式简单化,要充分利用图形的对称性.学生大体上有如下三个方案:①取一个定点
8、为原点,以所在直线为轴建立直角坐标系;②以所在直线为y轴,线段的中点为原点建立直角坐标系;③以所在直线为轴,线段的中点为原点建立直角坐标系.最后优化思维选定方案②,
此文档下载收益归作者所有