欢迎来到天天文库
浏览记录
ID:13849926
大小:1.57 MB
页数:15页
时间:2018-07-24
《(3)2012年北京市各城区一模试题压轴题汇编.操作探究题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2012年北京各城区一模试题汇编操作探究题1.(12海淀一模)阅读下面材料:小明遇到这样一个问题:如图1:△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.ABCDO图1EABCDO图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△OBE即是以AD、BC、OC+OD的长
2、度为三边长的三角形(如图2).请你回答:图2中△OBE的面积等于___________.请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留作图痕迹);(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于__________.ABCIHDFGE图31.(12西城一模)阅读下列材料:问题:如图1,在正方形ABCD内有
3、一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1图2图32.(12石景山一模)生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中的纸条按图②方式拉紧,压平后可
4、得到图③中的正五边形(阴影部分表示纸条的反面).图①图②图③图②(1)将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是;(2)若原长方形纸条(图①)宽为2cm,求(1)中展开后平面图形的周长(可以用三角函数表示).1.(12丰台一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN(如图2).(1)在图3中画出另一种剪拼成等腰
5、三角形的示意图;(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为,则所有满足条件的k的值为.2.(12燕山一模)请你先动笔在草稿纸上画一画,再回答下列问题:(1)平面内两条直线,可以把平面分成几部分?(2)平面内3条直线,可以把平面分成几部分?(3)平面内4条直线,可以把平面最多分成多少部分?(4)平面内100条直线,可以把平面最多分成多少
6、部分?1.(12昌平一模)问题探究:(1)如图1,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图2,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,保留作图痕迹.2.(12顺义一模)问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空
7、:四边形DFCE的面积,△DBF的面积,△ADE的面积.探究发现(2)在(1)中,若,,DG与BC间的距离为.直接写出(用含S、的代数式表示).拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利用(2)中的结论求□DEFG的面积,直接写出结果.1.(12延庆一模)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=45°,求线段AD的长.小红是这样想的:作△ABC的外接圆⊙O,如图2:利用同弧所对圆周角和圆心角的关
8、系,可以知道∠BOC=90°,然后过O点作OE⊥BC于E,作OF⊥AD于F,在Rt△BOC中可以求出⊙O半径及OE,在Rt△AOF中可以求出AF,最后利用AD=AF+DF得以解决此题。请你回答图2中线段AD的长.参考小红思考问题的方法
此文档下载收益归作者所有