欢迎来到天天文库
浏览记录
ID:14182257
大小:1.54 MB
页数:14页
时间:2018-07-26
《2012年北京市17区一模试题汇编7.操作探究题.莹》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2012年北京市17区一模试题汇编操作探究题1.(12海淀一模)阅读下面材料:小明遇到这样一个问题:如图1:△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.ABCDO图1EABCDO图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△OBE即是
2、以AD、BC、OC+OD的长度为三边长的三角形(如图2).请你回答:图2中△OBE的面积等于___________.请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留作图痕迹);(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于__________.ABCIHDFGE图3141.(12
3、西城一模)阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1图2图32.(12石景山一模)生活中
4、,有人用纸条可以折成正五边形的形状,折叠过程是将图①中的纸条按图②方式拉紧,压平后可得到图③中的正五边形(阴影部分表示纸条的反面).图①图②图③图②(1)将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是;(2)若原长方形纸条(图①)宽为2cm,求(1)中展开后平面图形的周长(可以用三角函数表示).141.(12丰台一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E
5、、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN(如图2).(1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为,则所有满足条件的k的值为.141.(12燕山一模)请你先动笔在草稿纸上画一画,再回答下列问题:(1)平面内两条直线,可以把平面分成几部分
6、?(2)平面内3条直线,可以把平面分成几部分?(3)平面内4条直线,可以把平面最多分成多少部分?(4)平面内100条直线,可以把平面最多分成多少部分?2.(12昌平一模)问题探究:(1)如图1,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图2,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最
7、大的所有点P,保留作图痕迹.141.(12顺义一模)问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空:四边形DFCE的面积,△DBF的面积,△ADE的面积.探究发现(2)在(1)中,若,,DG与BC间的距离为.直接写出(用含S、的代数式表示).拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利用(2)中的结论求□DEFG的面积,直接写出结果.2.(12朝阳一模)阅读
8、下面材料:问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD的长为;(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长.14图①图②1.(12延庆一模)阅
此文档下载收益归作者所有