反比例函数的典型综合练习题

反比例函数的典型综合练习题

ID:12967676

大小:1020.50 KB

页数:33页

时间:2018-07-19

反比例函数的典型综合练习题_第1页
反比例函数的典型综合练习题_第2页
反比例函数的典型综合练习题_第3页
反比例函数的典型综合练习题_第4页
反比例函数的典型综合练习题_第5页
资源描述:

《反比例函数的典型综合练习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、反比例函数的典型综合练习题1反比例函数的典型综合练习题 一.选择题(共18小题)1.如图,▱ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C,D在双曲线上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k的值等于(  ) A.12B.10C.8D.62.(2012•泸州)如图,在△OAB中,C是AB的中点,反比例函数y=(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为(  ) A.2B.4C.8D.163.(2012•黄石)如图所示,已知A(,y1),B(2,y2)为

2、反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(  ) A.(,0)B.(1,0)C.(,0)D.(,0)4.(2012•福州)如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是(  )33 A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤85.(2012•德州)如图,两个反比例函数和的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥

3、y轴,垂足为D,交l2于点B,则三角形PAB的面积为(  ) A.3B.4C.D.56.(2011•兰州)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为(  ) A.1B.﹣3C.4D.1或﹣37.(2011•湖州)如图,已知A、B是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN

4、的面积为S,P点运动时间为t,则S关于t的函数图象大致为(  ) A.B.C.D.8.(2011•河北)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是(  )33 A.①②④B.②④⑤C.③④⑤D.②③⑤9.(2010•孝感)双曲线y=与y=在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A,B两

5、点,连接OA,OB,则△AOB的面积为(  ) A.1B.2C.3D.410.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为(  ) A.y=B.y=C.y=D.y=11.(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是(  ) A.1<k<2B.1≤k≤3C.1≤k≤

6、4D.1≤k<43312.(2010•长春)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为(  ) A.2B.3C.4D.613.(2010•鞍山)如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为(  ) A.(,0)B.(,0)C.(3,0)D.(,0)14.(2009•宁波)反比例函数y=在第一象限的图象如图所示,则k的值可能是(  )

7、 A.1B.2C.3D.415.(2009•眉山)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为(  ) A.B.5C.D.3316.(2009•鄂州)如图,直y=mx与双曲线y=交于点A,B.过点A作AM⊥x轴,垂足为点M,连接BM.若S△ABM=1,则k的值是(  ) A.1B.m﹣1C.2D.m17.(2008•临沂)如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为( 

8、 ) A.﹣8B.4C.﹣4D.018.(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是(  ) A.(2,1)B.(﹣2,﹣1)C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。