2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析

2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析

ID:12458872

大小:364.00 KB

页数:12页

时间:2018-07-17

2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析_第1页
2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析_第2页
2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析_第3页
2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析_第4页
2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析_第5页
资源描述:

《2018高考数学考点突破——立体几何:直线、平面垂直的判定及其性质+word版含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、直线、平面垂直的判定及其性质【考点梳理】1.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.2.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面

2、内)时,规定直线和平面所成的角分别为90°和0°.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⇒l⊥α【考点突破】考点一、线面垂直的判定与性

3、质【例1】如图,在三棱锥ABCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥AMBC的体积.[解析](1)证明:因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又因为CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,所以CD⊥平面ABD.(2)由AB⊥平面BCD,得AB⊥BD.又AB=BD=1,所以S△ABD=×12=.因为M是AD的中点,所以S△ABM=S△ABD=.根据(1)知,CD⊥平面ABD,则三棱锥CABM的高h=CD=1,故VAMBC=VCABM=S△ABM·h=.【类题通法】

4、1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质.2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【对点训练】如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=DB,点C为圆O上一点,且BC=AC,PD⊥平面ABC,PD=DB.求证:PA⊥CD.[解析]证明:因为AB为圆O的直径,所以AC⊥CB,在Rt△ABC中,由AC=BC,得∠ABC=30°.设AD=1,由3

5、AD=DB,得DB=3,BC=2,由余弦定理得CD2=DB2+BC2-2DB·BCcos30°=3,所以CD2+DB2=BC2,即CD⊥AO.因为PD⊥平面ABC,CD⊂平面ABC,所以PD⊥CD,由PD∩AO=D,得CD⊥平面PAB,又PA⊂平面PAB,所以PA⊥CD.考点二、面面垂直的判定与性质【例2】如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.[解析]证明:(1)如图所示,连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEFABC中,AB=2DE,G为

6、AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,由于HM⊂平面FGH,BD⊄平面FGH,故BD∥平面FGH.(2)连接HE,GE,CD,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.由于CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H.所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.【类题通法】1.面面垂直的证明的两种思路:(1)用面面垂直的

7、判定定理,即先证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证明平面角为直角的问题.2.垂直问题的转化关系:【对点训练】如图,在三棱锥PABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:PA⊥平面MNC.[解析]证明:(1)因为M,N分别为AB,PA的中点,所以MN∥PB,又因为MN⊂平面MNC,PB⊄平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。