1、2018年高考数学一轮复习第七章立体几何课时达标42直线、平面垂直的判定及其性质理[解密考纲]对直线、平面垂直的判定与性质定理的初步考查一般以选择题、填空题的形式出现,难度不大;综合应用直线、平面垂直的判定与性质常以解答题为主,难度中等.一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是 ( D )A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β解析:如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l
2、⇒AB∥β,只有D不一定成立,故选D.2.(2017·广东珠海模拟)在空间中,l,m,n,a,b表示直线,α表示平面,则下列命题正确的是( D )A.若l∥α,m⊥l,则m⊥αB.若l⊥m,m⊥n,则m∥nC.若a⊥α,a⊥b,则b∥αD.若l⊥α,l∥a,则a⊥α解析:对于A,m与α位置关系不确定,故A错;对于B,当l与m,m与n为异面垂直时,m与n可能异面或相交,故B错;对于C,也可能b⊂α,故C错;对于D,由线面垂直的定义可知正确.3.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥A
3、C,则C1在底面ABC上的射影H必在( A )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂面ABC,∴平面ABC1⊥平面ABC.∴C1在面ABC上的射影H必在两平面交线AB上.4.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下面命题正确的是( D )A.平面ABD⊥平面ABCB.平面ADC⊥平面B
4、DCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB,又AB⊥AD,故AB⊥平面ADC,所以平面ABC⊥平面ADC.5.如图所示,AB是⊙O的直径,VA垂直于⊙O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( D )A.MN∥ABB.MN与BC所成的角为45°C.OC⊥平面VACD.平面VAC⊥平面VBC解析:对于A,MN与AB异面,故A错,对
5、于B,可证BC⊥平面VAC,故BC⊥MN,所以所成的角为90°,因此B错;对于C,OC与AC不垂直,所以OC不可能垂直平面VAC,故C错;对于D,由于BC⊥AC,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC,因为AC∩VA=A,所以BC⊥平面VAC,BC⊂平面VBC,所以平面VAC⊥平面VBC,故D正确.6.在如图所示的四个正方体中,能得出AB⊥CD的是( A )解析:A中,因为CD⊥平面AMB,所以CD⊥AB;B中,AB与CD成60°角;C中,AB与CD成45°角;D中,AB与CD夹角的正切值为