资源描述:
《matlab中插值拟合与查表》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、MATLAB中的插值、拟合与查表插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续
2、)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。根据测量数据的类型:1.测量值是准确的,没有误差。2.测量值与真实值有误差。这时对应地有两种处理观测数据方法:1.插值或曲线拟合。2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。2.2.1插值命令命令1interp1功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量
3、之间的关系示意图为图2-14。格式yi=interp1(x,Y,xi)%返回插值向量yi,每一元素对应于参量xi,同时由向量x与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。yi=interp1(Y,xi)%假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。yi=interp1(x,Y,xi,method)%用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。对于该方法
4、,命令interp1调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline用它们执行三次样条函数插值;’pchip’:分段三次Hermite插值。对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。该方法保留单调性与数据的外形;’cubic’:与’pchip’操作相同;’v5cubic’:在MATLAB5.0中的三次插值。对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1将对
5、超出的分量执行外插值算法。yi=interp1(x,Y,xi,method,'extrap')%对于超出x范围的xi中的分量将执行特殊的外插值法extrap。yi=interp1(x,Y,xi,method,extrapval)%确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。例2-31>>x=0:10;y=x.*sin(x);>>xx=0:.25:10;yy=interp1(x,y,xx);>>plot(x,y,'kd',xx,yy)例2-32>>year=1900:10:2010;>>product=[75.99591.972105.7
6、11123.203131.669150.697179.323203.212226.505249.633256.344267.893];>>p1995=interp1(year,product,1995)>>x=1900:1:2010;>>y=interp1(year,product,x,'pchip');>>plot(year,product,'o',x,y)插值结果为:p1995=252.9885命令2interp2功能二维数据内插值(表格查找)格式ZI=interp2(X,Y,Z,XI,YI)%返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的
7、元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(NotaNumber)。ZI=interp2(Z,XI,YI)%缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。ZI=interp2(Z,n)