含参数函数恒成立问题

含参数函数恒成立问题

ID:11863956

大小:62.50 KB

页数:3页

时间:2018-07-14

含参数函数恒成立问题_第1页
含参数函数恒成立问题_第2页
含参数函数恒成立问题_第3页
资源描述:

《含参数函数恒成立问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、巧用变换自变量解决有关含参数函数恒成立问题数学组陈艳数学中的常量和变量相互依存,并在一定条件下相互转化.而参数(也叫参变量)是介于常量和变量之间的具有中间性质的量,它的本质是变量,但又可视为常数,正是由于参数的这种两重性和灵活性,在分析和解决问题的过程中,引进参数就能表现出较大的能动作用和活力,“引参求变”是一种重要的思维策略,是解决各类数学问题的有力武器. 参数是数学中的活泼“元素”,特别是一个数学问题中条件与结论涉及的因素较多,转换过程较长时,参数的设定和处理的作用尤为突出,处理好参数与常数及变数的联系与转换,在某些问题的求解过程中起到了十分关键的作用,下面

2、就变换自变量法解决一类恒成立的问题举例说明.例1、,当[-2,2]时,有恒成立,求实数x的取值范围.分析:在不等式中出现了两个字母:x及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p视作自变量,则上述问题即可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。而这个一次函数的图象是只是在[-2,2]内的一段线段,所以只需两端的函数值大于零即可.略解:不等式即(x-1)p+x2-2x+1>0,设f(p)=(x-1)p+x2-2x+1,则f(p)在[-2,2]上恒大于0,故有:即解得:∴x<-1或x>3.例2.设不等式2x-1>m(x-1)

3、对满足

4、m

5、≤2的一切实数m的取值都成立。求x的取值范围。分析:此问题由于常见的思维定势,易把它看成关于x的不等式讨论。然而,若变换一个角度以m为变量,即关于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的问题。对此的研究,设f(m)=(x-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件。解:问题可变成关于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2]恒成立,设f(m)=(x-1)m-(2x-1),则解得x∈(,)说明本题的关键是变换角度,以参数m作为自变量而

6、构造函数式,不等式问题变成函数在闭区间上的值域问题。本题有别于关于x的不等式2x-1>m(x-1)的解集是[-2,2]时求m的值、关于x的不等式2x-1>m(x-1)在[-2,2]上恒成立时求m的范围。例3 设P=(log2x)+(t-2)log2x-t+1,若t在区间[-2,2]上变动时,P恒为正值,试求x的变化范围.分析:要求x的变化范围,显然要依题设条件寻找含x的不等式(组),这就需要认真思考条件中“t在区间[-2,2]上变动时,P恒为正值.”的含义.你是怎样理解的?如果继续思考有困难、请换一个角度去思考.在所给数学结构中,右式含两个字母x、t,t是在给定

7、区间内变化的,而求的是x的取值范围,能想到什么?解:设P=f(t)=(log2x-1)t+log22x-2log2x+1.因为P=f(t)在直角坐标系内是一直线,所以t在区间[-2,2]上变动时,P恒为正值的充要条件解得log2x>3或log2x<-1.说明:改变看问题的角度,构造关于t的一次函数,灵活运用函数的思想,使难解的问题转化为熟悉的问题.练习1、对任意,恒成立,则的取值范围是。规律总结:在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化。或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧

8、妙地解决有关问题。一般给出函数参数的取值范围,并且在涉及恒成立的情况下,求实数x的取值范围时,我们往往采用变换自变量的方法来求。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。