数学_必修5_总结.doc

数学_必修5_总结.doc

ID:11708425

大小:353.00 KB

页数:5页

时间:2018-07-13

数学_必修5_总结.doc_第1页
数学_必修5_总结.doc_第2页
数学_必修5_总结.doc_第3页
数学_必修5_总结.doc_第4页
数学_必修5_总结.doc_第5页
资源描述:

《数学_必修5_总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《解三角形》的复习1.正弦定理:(1)形式一:=2R;形式二:;;;(角到边的转换)形式三:,,;(边到角的转换)形式四:;(求三角形的面积)(2)解决以下两类问题:②、已知两角和任一边,求其他两边和一角;(唯一解)①、已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)。(3)若给出那么解的个数为:若,则无解;若,则一解;若,则两解;2.余弦定理:txjy(1)形式一:,,形式二:,,,(角到边的转换)(2)解决以下两类问题:①、已知三边,求三个角;(唯一解)②、已知两边和它们得夹角,求第三边和其他两个角;(唯一解)【精典范例】【例1】

2、根据下列条件判断三角形ABC的形状:(1)若a2tanB=b2tanA;(2)b2sin2C+c2sin2B=2bccosBcosC;(3)(sinA+sinB+sinC)–(cosA+cosB+cosC)=1.【解】(1)由已知及正弦定理(2RsinA)2=(2RsinB)22sinAcosA=2sinBcosBsin2A=sin2B2cos(A+B)sin(A–B)=0∴A+B=90o或A–B=0所以△ABC是等腰三角形或直角三角形.(2)由正弦定理得sin2Bsin2C=sinBsinCcosBcosC∵sinBsinC≠0,∴sinBsinC=co

3、sBcosC,即cos(B+C)=0,∴B+C=90o,A=90o,故△ABC是直角三角形.(3)(sinA+sinB+sinC)–(cosA+cosB+cosC)=1[2sincos+sin(A+B)]–[2coscos+2cos2-1]=0[2sincos+sin(A+B)]–2coscos-2sin2=0(sin-cos)(cos-sin)=0sin(-)sinsin=0△ABC是Rt△.【例2】3.△ABC中已知∠A=30°cosB=2sinB-①求证:△ABC是等腰三角形②设D是△ABC外接圆直径BE与AC的交点,且AB=2求:的值【解】①°从而

4、△ABC是顶角为A的等腰三角形。②在△ABC中由正弦定理在△BCD中由正弦定理【例3】在ΔABC中,角A、B、C所对的边分别为、b、c,且.(Ⅰ)求的值;(Ⅱ)若,求bc的最大值.【解】(Ⅰ)====(Ⅱ)∵∴,又∵∴且仅当b=c=时,bc=,故bc的最大值是.《数列》复习1、数列[数列的通项公式][数列的前n项和]2、等差数列[等差数列的概念][定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。[等差数列的判定方法]1.定义法:对于数列,若(常数),则数列是等

5、差数列。2.等差中项:对于数列,若,则数列是等差数列。[等差数列的通项公式]如果等差数列的首项是,公差是,则等差数列的通项为。[说明]该公式整理后是关于n的一次函数。[等差数列的前n项和]1.2.[说明]对于公式2整理后是关于n的没有常数项的二次函数。[等差中项]如果,,成等差数列,那么叫做与的等差中项。即:或[说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。[等差数列的性质]1.等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,

6、且,公差为,则有2.对于等差数列,若,则。也就是:,如图所示:3.若数列是等差数列,是其前n项的和,,那么,,成等差数列。如下图所示:3、等比数列[等比数列的概念][定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示()。[等比中项]如果在与之间插入一个数,使,,成等比数列,那么叫做与的等比中项。也就是,如果是的等比中项,那么,即。[等比数列的判定方法]1.定义法:对于数列,若,则数列是等比数列。2.等比中项:对于数列,若,则数列是等比数列。[等比数列的通项公式]

7、如果等比数列的首项是,公比是,则等比数列的通项为。[等比数列的前n项和]当时,[等比数列的性质]1.等比数列任意两项间的关系:如果是等比数列的第项,是等差数列的第项,且,公比为,则有1.对于等比数列,若,则也就是:。如图所示:4.若数列是等比数列,是其前n项的和,,那么,,成等比数列。如下图所示:4、数列前n项和(1)重要公式:;;(2)等差数列中,(3)等比数列中,(4)裂项求和:;【追踪训练】1、求下列数列的一个通项公式:⑴⑵⑶⑷2、已知为等差数列的前项和,,则.3.已知个数成等差数列,它们的和为,平方和为,求这个数.4、已知为等差数列,,则5、已知为

8、等比数列,,则6、已知为等差数列的前项和,,求.7、已知下列数列的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。