欢迎来到天天文库
浏览记录
ID:9021481
大小:319.34 KB
页数:16页
时间:2018-04-15
《关于多项式整除性的讨论毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、巢湖学院2015届本科毕业论文(设计)关于多项式整除性的讨论摘要多项式整除性的研究在多项式理论和方法中占有一个重要的地位,在多项式的运算范围内,除法的运算不封闭,由于这个原因我们没有在多项式环上定义除法运算.本文首先根据以前所学的原理引出带余除法,在带余除法的基础上得出多项式整除的定义,接着引入与多项式整除相关的内容,本文将秉承着由简单到复杂,理论与实例相结合的研究方法,进行关于多项式整除性的讨论.关键词:多项式;带余除法;整除I关于多项式整除性的讨论DiscussionontheDivisibilityofPolynomialAbstractResearchonpoly
2、nomialdivisibleoccupiesanimportantpositioninthepolynomialtheoryandmethod,thepolynomialoperationscope,divisionoperationisclosed,andforthisreasonwearenotintheringofpolynomialsdefinedonthedivisionoperation.Thisarticlefromtheknowledgewehavelearned,introducingtheconceptofdivision,thusobtainsth
3、edivisibilityofpolynomial.Thenitintroducestherelatedcontentofthedivisibilityofpolynomial.Thispaperwillupholdfromthesimpletothecomplex,theresearchmethodofcombiningtheoryandpractice,sumsupsomediscussiononthedivisibilityofpolynomial.Keywords:Polynomial,divisionwithremainder,exactdivisionII目录
4、引言................................................................................................................................11.带余除法定理..........................................................................................................12.整除的定义....................................
5、..........................................................................23.和整除相关的知识..................................................................................................33.1整除的基本性质...............................................................................................
6、.....33.2多项式的整除性与它所在系数域之间的关系....................................................43.3最大公因式............................................................................................................53.3.1最大公因式的定义..............................................................................
7、..............53.3.2重因式的定义....................................................................................................53.3.3多项式互素的相关性质....................................................................................54.处理整除性问题的一些常用方法.......................
此文档下载收益归作者所有