选修4-1几何证明选讲总复习

选修4-1几何证明选讲总复习

ID:6882739

大小:431.50 KB

页数:7页

时间:2018-01-29

选修4-1几何证明选讲总复习_第1页
选修4-1几何证明选讲总复习_第2页
选修4-1几何证明选讲总复习_第3页
选修4-1几何证明选讲总复习_第4页
选修4-1几何证明选讲总复习_第5页
资源描述:

《选修4-1几何证明选讲总复习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、相似三角形的判定及其有关性质复习一.知识梳理1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段推论1:经过三角形一边的中点与另一边平行的直线必推论2:经过梯形一腰的中点,且与底边平行的直线三角形中位线定理:三角形的中位线平行于,并且等于2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段结论1:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边结论

2、2:三角形的一个内角平分线分对边所成的两条线断于这个角的两边.结论3:若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边3.相似三角形的判定定理:(1)(SAS)(2)(SSS)(3)(AA)相似三角形的性质定理:相似三角形的对应线段的比等于,面积比等于.4.直角三角形的射影定理:直角三角形斜边上的高是两条直角边在斜边上摄影的,两条直角边分别是它们在斜边上射影与斜边的.二.模拟练习1.如图1,,AM=3,BM=5,CM=4.5,EF=16,则DM=,EK=,FK=.ADB

3、┐┐图22.如图2,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm,则梯子的长为cm.AMCEKFBDl1l2l3图13.如图3,ΔABC中,∠1=∠B,则Δ∽Δ.此时若AD=3,BD=2,则AC=.4.如图4,CD是RtΔABC的斜边上的高.(1)若AD=9,CD=6,则BD=;ACBD╭1图3┐ABCD图4(2)若AB=25,BC=15,则BD=.5.如图5,ΔABC中,点D为BC中点,点E在CA上,且CE=EA,AD,BE交于点F,则AF:FD=.6.一个等腰梯

4、形的周长是80cm,如果它的中位线长与腰长相等,它的高是12cm,则这个梯形的面积为cm2.7.两个三角形相似,它们的周长分别是12和18,周长较小的三角形的最短边长为3,则另一个三角形的最短边长为.ACB图6E╮╮12ABCDFE图58.如图6,已知∠1=∠2,请补充条件:(写一个即可),使得ΔABC∽ΔADE.D9.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是,则梯形的上、下底长分别是__________.10.如图7,BD、CE是的中线,P、Q分别是BD、CE的中点

5、,则=图711、如图,等边△内接于△,且DE//BC,已知于点H,BC=4,AH=,求△的边长.BCADFHE712、如图8,在ΔABC中,作直线DN平行于中线AM,设这条直线交边AB与点D,交边CA的延长线于点E,交边BC于点N.ABCDME图8N求证:AD∶AB=AE∶AC.13、如图9,E,F分别是正方形ABCD的边AB和AD上的点,且.ABCDMFE图9求证:∠AEF=∠FBD.14、(2009年海南、宁夏高考)w.w.w.k.s.如图,已知的两条角平分线和相交于H,,F在上,且.(I)证明:B

6、,D,H,E四点共圆:(II)证明:平分。w.w.w.k.s.5.u.c.o.m.w.w.w.k.s.5.u7直线与圆的位置关系复习一.知识梳理1.圆周角定理:圆上一条弧所对的圆周角等于圆心角定理:圆心角的度数等于的度数推论1:同弧或等弧所对的圆周角;同圆或等圆中,相等的圆周角所对的弧推论2:半圆(或直径)所对的圆周角是;的圆周角所对的弦是弦切角定理:弦切角等于它所夹的弧所对的2.圆内接四边形的性质与判定定理:圆的内接四边形的对角;圆内接四边形的外角等于它的内角的如果一个四边形的对角互补,那么这个四边形

7、的四个顶点如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点3.切线的性质定理:圆的切线垂直于经过切点的推论:经过圆心且垂直于切线的直线必经过;经过切点且垂直于切线的直线必经过切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的4.相交弦定理:圆内两条相交弦,的积相等.割线定理:从圆外一点引圆的两条割线,的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长;圆心和这点的连线平分的夹角.二.模拟练习1、如

8、图1,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连结AC、BC、OC,那么下列结论中正确结论的个数有个①PC2=PA·PB;②PC·OC=OP·CD;③OA2=OD·OP;④OA(CP-CD)=AP·CD.AODPCB┐图12、AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP∶PB=1∶4,CD=8,则直径AB的长是3、如图2,AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于点C,PC=3,PB=1,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。