2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx

2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx

ID:60992648

大小:40.60 KB

页数:9页

时间:2021-01-18

2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx_第1页
2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx_第2页
2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx_第3页
2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx_第4页
2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx_第5页
资源描述:

《2021届高考数学(理)二轮复习考点01 集合与简单逻辑(押题解析版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考押题专练1.已知a∈R,则“a>2”是“a2>2a”成立的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.2.已知集合A={z∈C

2、z=1-2ai,a∈R},B={z∈C

3、

4、z

5、=2},则A∩B等于(  )A.{1+i,1-i}B.{-i}C.{1+2i,1-2i}D.{1-i}【答案】A【解析】A∩B中的元素同时具有A,B的特征,问题等价于

6、1-2ai

7、=2,a∈R,解得a=±.故选A.3.设

8、A,B是两个非空集合,定义运算A×B={x

9、x∈A∪B且x∉A∩B}.已知A={x

10、y=},B={y

11、y=2x,x>0},则A×B=(  )A.[0,1]∪(2,+∞)B.[0,1)∪[2,+∞)C.[0,1]D.[0,2]【答案】A【解析】由题意得A={x

12、2x-x2≥0}={x

13、0≤x≤2},B={y

14、y>1},所以A∪B=[0,+∞),A∩B=(1,2],所以A×B=[0,1]∪(2,+∞).4.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+logx2≥2,则x>1;③“若a>b>0且c<0,则>”的逆否

15、命题;④若p且q为假命题,则p,q均为假命题.其中真命题是(  )A.①②③B.①②④C.①③④D.②③④【答案】A【解析】①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+≥2,得x>1;③中由a>b>0,得<,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.5.设集合P=,集合T={x

16、mx+1=0},若T⊆P,则实数m的取值组成的集合是(  )A.B.C.D.【答案】C【解析】由2x2+2x=-x-6,得2x2+2x=2x+6,∴x2+2x=x+6,

17、即x2+x-6=0,∴集合P={2,-3}.若m=0,则T=∅⊆P.若m≠0,则T=,由T⊆P,得-=2或-=-3,∴m=-或m=.故选C.6.若“0

18、-5x+6≠0”B.若命题p:∃x0∈R,x+x0+1<0,则┐p:∀x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy≥2”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必有一真一假【答案】D【解析】易知A,B正确;由xy≥2⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y知,C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.8.有如下四个命题:p1:∃x0∈(0,+∞),<;p2:∃x0∈,x=;p3:∀x∈R,2x>x2;p4:∀x∈(1,+∞),

19、x-1>logx.其中真命题是(  )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【答案】D【解析】根据指数函数的性质,∀x∈(0,+∞),x>x,故命题p1是假命题;令f(x)=x-x,则f=->0,f=-<0,所以ff<0,所以命题p2是真命题;当x=2时,2x=22=4,x2=22=4,故2x>x2不成立,命题p3是假命题;当x>1时,x-1>1,logx<0,故x-1>logx恒成立,命题p4是真命题,故选D.9.下列命题正确的个数是(  )①命题“∃x0∈R,x+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函

20、数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.A.1B.2C.3D.4【答案】B【解析】易知①正确;因为f(x)=cos2ax,所以=π,即a=±1,因此②正确;因为x2+2x≥ax在x∈[1,2]上恒成立⇒a≤x+2在x∈[1,2]上恒成立⇒a≤(x+2)min,x∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b<0得向量

21、夹角包含180°,因此“平面向量a与b的夹角是钝角”的充要条件是“a·b<0且a与b不反向”,故④不正确.13.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若l

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。