欢迎来到天天文库
浏览记录
ID:60218856
大小:70.50 KB
页数:5页
时间:2020-12-04
《最新《解方程(例4、5)》名师教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4第九课时解方程(例4、5)郑上路第二小学许冰晓一、学习目标(一)学习内容《义务教育教科书数学》(人教版)五年级上册第69页解方程(例4、5)是在学生学习了等式的性质和形如x±a=b、ax=b、a-x=b的方程的解法的基础上进行学习的。(二)核心能力能用符号表示数和数量关系,增强符号意识,在解方程中利用转化的思想解决新知。(三)学习目标1.借助直观图,通过对比、观察,能列出方程并利用等式的性质解形如ax+b=c的方程。2.通过对比、观察,能利用等式的性质解形如a(x+b)=c的方程。(四)学习重点运用等式的性质,掌握简易方程的解法。(五)学习难点会通过观
2、察简易方程的特点,熟练掌握简易方程的解法。(六)配套资源实施资源:《解方程(例4、5)》名师课件二、学习设计(一)课前设计1.预习任务(1)解下列方程。2x+4=102(x-16)=8(二)课堂设计1.复习导入解下列方程。3x=36x-16=4师:解这两个方程的依据是什么?师:这节课我们继续学习利用等式的性质解方程。板书课题:解方程【设计意图:通过复习学过的知识以及等式的基本性质,既巩固了所学的知识,又为新知的学习做好铺垫,为方法的迁移奠定必要的基础。】2.问题探究44(1)解形如ax+b=c的方程①引入问题,探究新知出示例4示意图。师:看图列方程,并求
3、出方程的解。生列方程:3x+4=40师:这个方程与我们刚做的3x=36进行比较,有什么不一样?生交流。师:这个方程该怎么解呢?请独立完成后,同桌交流各自的想法。组织学生汇报。(交流中引导学生解释:先把什么看成一个整体?为什么要这样做?)小结:在解这个方程时,根据等式的性质,先求出3x=?,再求x=?。【设计意图:本环节是本节课的第一个教学重点。首先借助直观图得出ax+b=c的方程。然后通过与课前做的方程3x=36进行比较,学生就很容易想到把3x看作一个整体,从而根据等式的性质1求出3x的值,即转化3x=36来解决。先让学生先独立思考,然后与同桌说一说自己
4、的想法并写出解决过程。最后组织学生汇报。在本环节教学中,借助之前所学知识,顺势迁移,并适时的引导点拨,让学生自己去思考、计算。考查目标1。】练一练:3x-12×6=6小结:形如ax+b=c的方程,先把ax看成一个整体,再根据等式的性质1求出ax的值,即转化ax=b来解决。(2)解形如a(x+b)=c的方程①交流预习任务,提出问题课前预习:x-16=42(x-16)=8师:比较这两个方程,右边这个方程中先把什么看成一个整体?然后怎么做?四人小组交流课前预习并讨论解决这样形式方程的方法。师组织全班交流汇报。预设1:2(x-16)=8解:2(x-16)÷2=8
5、÷2x-16=4x=20预设2:2(x-16)=82x-32=8442x=40x=20最后进行检验。引导小结:形如a(x+b)=c的方程,可以先把小括号内的式子看作一个整体,也可以根据乘法分配律将原方程转化成ax+b=c来解决。【设计意图:本环节是本节课的第二个教学重点。先复习学过的知识,以旧引新,应用所学的知识解决新的问题,启发学生思考。通过让学生自己尝试解方程,激发了学生运用新知识解决新问题的欲望,学生也能体验到成功的快乐!考查目标2。】做一做:第69页的第1题。3.课堂总结师:通过这节的学习,你有什么新的收获?小结:通过大家的努力,我们发现形如ax
6、+b=c的方程,先把ax看成一个整体,再根据等式的性质1求出ax的值,即转化ax=b来解决;形如a(x+b)=c的方程,可以先把小括号内的式子看作一个整体,也可以根据乘法分配律将原方程转化成ax+b=c来解决。(三)课时作业1.解下列方程。6x-35=138x-4×14=0(5x-12)×8=24(100-3x)÷2=8答案:略。解析:这六道小题是在例题的基础上有一定的变化,做之前要先观察把什么看作一个整体,然后再根据等式的性质进行计算。(5x-12)×8=24这一题可以把小括号内的式子看作一个整体,也可以根据乘法分配律将原方程转化成40x-98=24来
7、解决。(100-3x)÷2=8这道题可以把小括号内的式子看作一个整体,再根据等式的性质解决。【考查目标1和目标2】2.看图列方程并求解。(1)(2)答案:(1)60+2x=158(2)x+3x=80解:2x+60-60=158-60解:4x=802x=984x÷4=80÷42x÷2=98÷2x=20x=4944解析:解答此题的关键是找准数量之间的相等关系,然后列出方程并解答。【考查目标1和目标2】3.若○+☆+○=16,○+☆=12,那么☆=(),○=()。答案:☆=(8),○=(4)解析:运用方程的思想解决简单的等量代换问题的情况。对比○+☆+○=16
8、和○+☆=12这两个式子,可以得出○=4,再把○=4代入到第二个式子中,就可以得
此文档下载收益归作者所有