欢迎来到天天文库
浏览记录
ID:59063714
大小:719.50 KB
页数:9页
时间:2020-10-29
《北京市西城区2016-2017学年高二上学期期末考试数学理科试卷.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北京市西城区2016—2017学年度第一学期期末试卷高二数学(理科)2017.1试卷满分:150分考试时间:120分钟题号一二三本卷总分151617181920分数一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.双曲线的一个焦点坐标为()(A)(B)(C)(D)2.已知椭圆的短轴长是焦距的倍,则椭圆的离心率为()(A)(B)(C)(D)3.设是两个不同的平面,是一条直线,以下命题正确的是()(A)若,,则(B)若,,则(C)若,,则(D)若,,则4.设,命题“若,则方程有
2、实根”的逆否命题是( )(A)若方程有实根,则(B)若方程有实根,则(C)若方程没有实根,则(D)若方程没有实根,则5.已知表示两个不同的平面,为平面内的一条直线,则“”是“”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件6.已知双曲线的焦点在轴上,焦距为,且双曲线的一条渐近线与直线平行,则双曲线的标准方程为()(A)(B)(C)(D)7.已知,,动点在线段上运动,则的最大值为()(A)(B)(C)(D)8.用一个平面截正方体和正四面体,给出下列结论:①正方体的截面不可能是直角三角形
3、;②正四面体的截面不可能是直角三角形;③正方体的截面可能是直角梯形;④若正四面体的截面是梯形,则一定是等腰梯形.其中,所有正确结论的序号是()(A)②③(B)①②④(C)①③(D)①④二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.命题“,使得”的否定是______________________.10.已知点,.如果直线垂直于直线,那么等于_______.11.在正方体中,异面直线所成角正(主)视图俯视图的余弦值为_________.12.一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图
4、的面积为_________.13.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为_________.14.学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是_________________________(所有测量数据用小写英文字母表示),算
5、出的抛物线标准方程为___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)ABCDPE如图,四棱锥的底面是正方形,侧棱底面,是的中点.(Ⅰ)求证:平面;(Ⅱ)证明:.16.(本小题满分13分)ABCPM如图,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.17.(本小题满分13分)已知直线过坐标原点,圆的方程为.(Ⅰ)当直线的斜率为时,求与圆相交所得的弦长;(Ⅱ)设直线与圆交于两点,且为的中点,求直线的方程.18.(本小题满分13分)已知
6、为椭圆的左焦点,过的直线与椭圆交于两点.(Ⅰ)若直线的倾斜角为,求;(Ⅱ)设直线的斜率为,点关于原点的对称点为,点关于轴的对称点为,所在直线的斜率为.若,求的值.19.(本小题满分14分)如图,四棱锥中,平面平面,,,,且,.EABCD(Ⅰ)求证:平面;(Ⅱ)求和平面所成角的正弦值;(Ⅲ)在线段上是否存在一点,使得平面平面,请说明理由.20.(本小题满分14分)如图,过原点引两条直线与抛物线和(其中为常数,)分别交于四个点.(Ⅰ)求抛物线准线间的距离;(Ⅱ)证明:;(Ⅲ)若,求梯形面积的最小值.北京市西城区2016—2017
7、学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.C;2.D;3.B;4.D;5.B;6.A;7.C;8.D.二、填空题:本大题共6小题,每小题5分,共30分.9.对任意,都有;10.;11.;12.;13.;14.碗底的直径,碗口的直径,碗的高度;.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)解:(Ⅰ)连结交于,连结,ABCDPEO因为四边形是正方形,所以为中点.又因为是的中点,所以,……
8、…3分因为平面,平面,所以平面.……………6分(Ⅱ)因为四边形是正方形,所以.……8分因为底面,且平面,所以.……………10分又因为,所以平面,……………12分又平面,所以.……………13分16.(本小题满分13分)解:(Ⅰ)因为平面,平面,所以.因为,,所以平面.……………2分所以.……
此文档下载收益归作者所有