余数问题(教师版).pdf

余数问题(教师版).pdf

ID:58955241

大小:96.78 KB

页数:6页

时间:2020-09-17

余数问题(教师版).pdf_第1页
余数问题(教师版).pdf_第2页
余数问题(教师版).pdf_第3页
余数问题(教师版).pdf_第4页
余数问题(教师版).pdf_第5页
资源描述:

《余数问题(教师版).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.余数问题知识精讲一、带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q⋯⋯r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:(1)当r0时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当r0时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。二、三大余数定理:1.余数的加法定理a与b的和除以c

2、的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2。..2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之

3、积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除。用式子表示为:如果有a≡b(modm),那么一定有a-b=mk,k是整数,即m

4、(a-b)经典例题【例1】用某自然数a去除1992,得到商是46,余数是r,求a和r.【

5、解析】因为1992是a的46倍还多r,得到19924643......14,得1992464314,所以a43,r14.【例2】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【解析】(法1)因为甲乙1132,所以甲乙乙1132乙乙12321088;(108832)1288【解析】则乙,甲1088乙1000.【解析】(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(111)倍,所以得到乙数10561288,甲数1088881000...【例3】一个两位数除310,余数是37,求这样的两位数。

6、【解析】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题。方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数。本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的有39,91.【例4】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是

7、除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968。【例5】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【解析】由48412,4859.6知,一组是10或11人.同理可知48316,48412知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【例6】一个两位数除以13的商是6,除以11所得的余数是

8、6,求这个两位数.【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于13678,并且小于13(61)91;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78583.【例7】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556,594514,..(56,14)14,14的约数有1,2,7,14,所以这个数可能为2,7,14

9、。20032【例8】2与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。