欢迎来到天天文库
浏览记录
ID:57355099
大小:119.66 KB
页数:4页
时间:2020-08-12
《小四奥数第03讲高斯求和.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为(1+100)×100÷2=5050。小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为
2、末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:(1)1,2,3,4,5,…,100;(2)1,3,5,7,9,…,99;(3)8,15,22,29,36,…,71。其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。例11+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得原式=(1+1999)×1
3、999÷2=1999000。注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。例211+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。原式=(11+31)×21÷2=441。在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。例33+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)
4、×25÷2=1275。例4求首项是25,公差是3的等差数列的前40项的和。解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。例5在下图中,每个最小的等边三角形的面积是12厘米,边长是1根火柴棍。问:(1)最大2三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。解:(1)最大三角形面积为(1+3+5+…+15)×12=[(1+1
5、5)×8÷2]×12=768(厘米)。2(2)火柴棍的数目为3+6+9+…+24=(3+24)×8÷2=108(根)。答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。例6盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。因此拿了十次后,多了2×1+2×2+…+2×10=2×(1+2
6、+…+10)=2×55=110(只)。加上原有的3只球,盒子里共有球110+3=113(只)。综合列式为:(3-1)×(1+2+…+10)+3=2×[(1+10)×10÷2]+3=113(只)。练习31.计算下列各题:(1)2+4+6+…+200;(2)17+19+21+…+39;(3)5+8+11+14+…+50;(4)3+10+17+24+…+101。2.求首项是5,末项是93,公差是4的等差数列的和。3.求首项是13,公差是5的等差数列的前30项的和。4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?5.求100以内除以3余2的所有数的和。6.在
7、所有的两位数中,十位数比个位数大的数共有多少个?答案与提示练习1.(1)10100;(2)336;(3)440;(4)780。2.1127。提示:项数=(93-5)÷4+1=23。3.2565。提示:末项=13+5×(30-1)=158。4.180次。解:(1+2+…+12)×2+24=180(次)。5.1650。解:2+5+8+…+98=1650。6.45个。提示:十位数为1,2,…,9的分别有
此文档下载收益归作者所有