高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc

高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc

ID:56744925

大小:1.14 MB

页数:7页

时间:2020-07-07

高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc_第1页
高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc_第2页
高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc_第3页
高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc_第4页
高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc_第5页
资源描述:

《高考数学一轮复习讲义 第49时 空间向量与立体几何 理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:空间向量与立体几何考纲要求:①理解直线的方向向量和平面的法向量.②能向量语言表述直线与直线、直线与平面、平面与平面的垂直关系、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理;④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的作用.教材复习异面直线所成角:设、分别为异面直线、的方向向量,则与的夹角直线、所成的角范围求法直线与平面所成的角:①直线与平面所成角的范围是;②设是斜线的方向向量,是平面的一个法向量,设斜线与平面所成的角为,则两平面的夹角:设和分别是平面和

2、的一个法向量,平面和的夹角为,则空间任意两点、间的距离即线段的长度:设、,则.点到平面距离:如右图,斜线交平面于点,平面一个法向量为,斜线的一个方向向量为,则点到平面的距离为直线的方向向量是,平面的法向量为,则∥.直线的方向向量是,平面的法向量为,则.平面的法向量为,平面的法向量为,则.平面的法向量为,平面的法向量为,则∥.典例分析:考点一异面直线所成的角问题1.(陕西)如图,在空间直角坐标系中有直三棱柱,,则直线与直线夹角的余弦值为考点二直线和平面所成的角问题2.(山东)已知三棱柱的侧棱与底面垂直,体积为,底面是边长为的正三角形

3、.若为底面的中心,则与平面所成角的大小为考点三平面和平面的夹角问题3.(陕西)如图,四棱柱的底面是正方形,为底面中心,平面,.证明:平面;求平面与平面的夹角的大小.考点四求点到平面的距离问题4.(江西)如图,在长方体中,,,点在棱上移动.略;当为的中点时,求点到面的距离;略.(请用多种方法,至少要用向量法)考点五存在性问题问题5:(北京)如图,在三棱柱中,是边长为的正方形,平面平面,,.求证:平面(这里不做);求二面角的余弦值(这里不做);证明:在线段存在点,使得,并求的值.课后作业:(洛阳联考)在平面直角坐标系中,点的坐标为,点

4、的坐标为,将直角坐标平面沿轴折成直二面角,则两点间的距离为   (辽宁六校联考)如图,平面平面,为正三角形,四边形为矩形,为的中点,与平面所成的角为.当长度为时,求点到平面的距离;二面角的大小是否与长度有关?请说明理由.走向高考:(辽宁)如图,正方体的棱长为,、分别是两条棱的中点,、、是顶点,那么点到截面的距离是如图,正方体的棱长为,是底面的中心,则到平面的距离为    (福建)如图,在长方体中,,为中点.(Ⅰ)求证:(这里不做);(Ⅱ)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;(Ⅲ)若二面角的大小为,求的

5、长(这里不做);

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。