欢迎来到天天文库
浏览记录
ID:43617286
大小:1.06 MB
页数:27页
时间:2019-10-11
《2017版高考数学(理)人教A版(全国)一轮复习(课件+习题+讲义):第8章 立体几何与空间向量 8.5》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、1.直线与平面垂直2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理图形条件结论判定a⊥b,b⊂α(b为α内的任意一条直线)a⊥αa⊥m,a⊥n,m、n⊂α,m∩n=Oa⊥αa∥b,a⊥αb⊥α性质a⊥α,b⊂αa⊥ba⊥α,b⊥αa∥b【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( × )(2)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √
2、 )(3)直线a⊥α,b⊥α,则a∥b.( √ )(4)若α⊥β,a⊥β⇒a∥α.( × )(5)a⊥α,a⊂β⇒α⊥β.( √ )(6)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( × )1.(教材改编)下列条件中,能判定直线l⊥平面α的是( )A.l与平面α内的两条直线垂直B.l与平面α内无数条直线垂直C.l与平面α内的某一条直线垂直D.l与平面α内任意一条直线垂直答案 D解析 由直线与平面垂直的定义,可知D正确.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β
3、内,且b⊥m,则“α⊥β”是“a⊥b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析 若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n,
4、n⊂α且α∥β答案 C解析 由线线平行性质的传递性和线面垂直的判定定理,可知C正确.4.(教材改编)PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有_____________________________对.答案 7解析 由于PD⊥平面ABCD,故平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.5.(教材改编)在三棱锥P-ABC
5、中,点P在平面ABC中的射影为点O,(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案 (1)外 (2)垂解析 (1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平
6、面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH为△ABC底边上的高,即O为△ABC的垂心.题型一 直线与平面垂直的判定与性质例1 (1)(2014·辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.①求证:EF⊥平面BCG;②求三棱锥D-BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.①证明 由已知得△ABC≌△DBC,因此AC=DC.又G为AD的中点
7、,所以CG⊥AD.同理BG⊥AD,又BG∩CG=G,因此AD⊥平面BGC.又EF∥AD,所以EF⊥平面BCG.②解 在平面ABC内,作AO⊥BC,交CB的延长线于O,如图由平面ABC⊥平面BCD,知AO⊥平面BDC.又G为AD中点,因此G到平面BDC的距离h是AO长度的一半.在△AOB中,AO=AB·sin60°=,所以VD-BCG=VG-BCD=S△DBC·h=×BD·BC·sin120°·=.(2)如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=DB,点C为圆O上一点,且BC=AC,PD
8、⊥平面ABC,PD=DB.求证:PA⊥CD.证明 因为AB为圆O的直径,所以AC⊥CB,在Rt△ABC中,由AC=BC得,∠ABC=30°,设AD=1,由3AD=DB得,DB=3,BC=2,由余弦定理得CD2=DB2+BC2-2DB·BCcos30°=3,所以CD2+DB2=BC2,即CD⊥AO.因为PD⊥平面ABC,CD⊂平面ABC,所以PD⊥CD,由PD∩AO=D得,CD⊥平面PAB,又PA⊂平面PAB,所以PA⊥CD.思
此文档下载收益归作者所有