资源描述:
《复数的四则运算课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、复数的四则运算知识回顾(4)复数的几何意义是什么?类比实数的运算法则能否得到复数的运算法则?(1)虚数单位i(2)复数的分类?(3)复数相等的等价条件?二、问题引入:三、知识新授:1.复数加减法的运算法则:运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).2.
2、复数的乘法:(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i2换成-1,并且把实部合并.即:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有:z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3.四、例题应用:例1.计算解:例2:计算复数的乘法与多项式的乘法是类似的.我们知道多项式的乘法用乘法公式可迅速展开,运算,类似地,
3、复数的乘法也可大胆运用乘法公式来展开运算.注意a+bi与a-bi两复数的特点.一步到位!(1)计算(a+bi)(a-bi)思考:设z=a+bi(a,b∈R),那么(1)定义:实部相等,虚部互为相反数的两个复数互为共轭复数.复数z=a+bi的共轭复数记作另外不难证明:3.共轭复数的概念、性质:(2)共轭复数的性质:已知:求:练习:实数集R中正整数指数的运算律,在复数集C中仍然成立.即对z1,z2,z3∈C及m,n∈N*有:zmzn=zm+n,(zm)n=zmn,(z1z2)n=z1nz2n.【探究】i的指数变化规律你能发现规律吗?有怎样的
4、规律?【例3】求值:常用结论:例4.设求证:⑴⑵思考:在复数集C内,你能将分解因式吗?(x+yi)(x-yi)五、课堂小结:1.复数加减法的运算法则:(1)运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).2.复数的乘法:(1)复数乘法的法则(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+
5、ad)i.(2)复数乘法的运算律:复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有:z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3.3.共轭复数的概念、性质:设z=a+bi(a,b∈R),那么定义:实部相等,虚部互为相反数的两个复数叫做互为共轭复数.复数z=a+bi的共轭复数记作4.i的指数变化规律:二、问题引入:目标:分母实数化;手段:三、知识新授:定义:把满足(c+di)(x+yi)=a+bi(c+di≠0)的复数x+yi叫做复数a+bi除以复数c+di的
6、商,其中a,b,c,d,x,y都是实数,记为由刚才的求商过程可以形式上写成(体会其中的过程):分母实数化四、例题应用:先写成分式形式化简成代数形式就得结果.然后分母实数化即可运算.(一般分子分母同时乘以分母的共轭复数)∴z=2+i.拓展研究:(2)D例5:例6.⑴、已知复数z的平方根为3+4i,求复数z;⑵、求复数z=3+4i的平方根.五、课堂小结:1、定义:把满足(c+di)(x+yi)=a+bi(c+di≠0)的复数x+yi叫做复数a+bi除以复数c+di的商,其中a,b,c,d,x,y都是实数,记为分母实数化2、3、转化思想:平方
7、根、方程复数相等4、整体代换思想:整体代换,妙不可言!注:复数集中韦达定理仍然成立!