专题05 平面解析几何.docx

专题05 平面解析几何.docx

ID:52720019

大小:670.27 KB

页数:17页

时间:2020-03-29

专题05  平面解析几何.docx_第1页
专题05  平面解析几何.docx_第2页
专题05  平面解析几何.docx_第3页
专题05  平面解析几何.docx_第4页
专题05  平面解析几何.docx_第5页
资源描述:

《专题05 平面解析几何.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题05平面解析几何17.【2019年高考全国Ⅲ卷理数】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.【答案】(1)见详解;(2)3或.【解析】(1)设,则.由于,所以切线DA的斜率为,故.整理得设,同理可得.故直线AB的方程为.所以直线AB过定点.(2)由(1)得直线AB的方程为.由,可得.于是,.设分别为点D,E到直线AB的距离,则.因此,四边形ADBE的面积.设M为线段AB的中点,则.由

2、于,而,与向量平行,所以.解得t=0或.当=0时,S=3;当时,.因此,四边形ADBE的面积为3或.【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.【答案】(1)抛物线的方程为,准线

3、方程为;(2)见解析.【解析】(1)由抛物线经过点,得.所以抛物线的方程为,其准线方程为.(2)抛物线的焦点为.设直线的方程为.由得.设,则.直线的方程为.令,得点A的横坐标.同理得点B的横坐标.设点,则,.令,即,则或.综上,以AB为直径的圆经过y轴上的定点和.【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【2019年高考天津卷理数】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程;(2)设点在椭圆上,且异于椭

4、圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.【答案】(1);(2)或.【解析】(1)设椭圆的半焦距为,依题意,,又,可得,.所以,椭圆的方程为.(2)由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立整理得,可得,代入得,进而直线的斜率.在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.所以,直线的斜率为或.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.20.【2019年

5、高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.【答案】(1);(2).【解析】(1)设椭圆C的焦距为2c.因为F1(−1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,AF2⊥x轴,所以DF2=,因此2a=DF1+DF2=4,从而a=2.由b2=a2−c2,得b2=3.因此,椭

6、圆C的标准方程为.(2)解法一:由(1)知,椭圆C:,a=2,因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x−1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(−1,0),所以直线AF1:y=2x+2.由,得,解得或.将代入,得,因此.又F2(1,0),所以直线BF2:.由,得,解得或.又因为E是线段BF2与椭圆的交点,所以.将代入,得.因此.解法二:由(1)知,椭圆C:.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以

7、∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(−1,0),由,得.又因为E是线段BF2与椭圆的交点,所以.因此.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点为抛物线的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记的面积分别为.(1)求p的值及抛物线的准线方程;(2)求的

8、最小值及此时点G的坐标.【答案】(1)p=2,准线方程为x=−1;(2)最小值为,此时G(2,0).【解析】(1)由题意得,即p=2.所以,抛物线的准

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。