欢迎来到天天文库
浏览记录
ID:50875386
大小:46.92 KB
页数:3页
时间:2020-03-15
《二元一次方程与一次函数经典习题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二元一次方程与一次函数课程学习要求1.知识与能力目标(1)二元一次方程和一次函数的关系.(2)二元一次方程组的图象解法.(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法.同时培养学生初步的数形结合的意识和能力.重点难点剖析1.二元一次方程和一次函数的关系.【剖析】1.例如:函数y=x+1和y=4x-2的交点坐标就是由两个函数表达式组成的方程组的解.因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题.2.二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一
2、次函数的图像相交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)2.能根据一次函数的图象求二元一次方程组的近似解.【剖析】1.把两个方程都化成函数表达式的形式.2.画出两个函数的图象.3.画出交点坐标,交点坐标即为方程组的解.(A层)夯实基础训练一、选择题1.如果直线y=3x+6与y=2x-4交点坐标为(a,b),则是方程组_______的解()A.B.C.D.2.已知y1=-x+1和y2=-2x-1,当x>-2时y1>y2;当x<-2时y13、5)C.(3,-2)D.(-5,-2)3.已知方程2x+1=-x+4的解是x=1,则直线y=2x+1与y=-x+4的交点是()A.(1,0)B.(1,3)C.(-1,-1)D.(-1,5)4.直线AB∥x轴,且A点坐标为(1,-2),则直线AB上任意一点的纵坐标都是-2,此时我们称直线AB为y=-2,那么直线y=3与直线x=2的交点是()A.(3,2)B.(2,3)C.(-2,-3)D.(-3,-2)二、填空题1.已知直线y=ax+b经过点(1,2)和(2,3),则a=________,b=________.2.解方程组解为________,则直线y=-x+154、和y=x-7的交点坐标是________.3.已知函数y=mx-(4m-3)的图象过原点,则m应取值为__________.4.直线y=2x-1与y=x+4的交点是(5,9),则当x_______时,直线y=2x-1上的点在直线y=x+4上相应点的上方;当x_______时,直线y=2x-1上的点在直线y=x+4上相应点的下方.三、解答题1.某超市为“开业三周年”举行了店庆活动.对、两种商品实行打折出售.打折前,购买5件商品和1件商品需用84元;购买6件商品和3件商品需用108元.而店庆期间,购买50件商品和50件商品仅需960元,这比不打折少花多少钱?(B层)5、拓展知识训练一、选择题1.若一次函数y=k1x+b1与y=k2x+b2的图像没有交点,则方程组的解的情况是().A.有无数组解B.有两组解C.只有一组解D.没有解2.如果一次函数y=3x+6与y=2x-4的交点坐标为(a,b),则是方程组()的解.A.B.C.D.3.若方程组没有解,由此一次函数y=2-x与y=-x的图像必定().A.重合B.平行C.相交D.无法判断4.已知方程组有正数解,则k的取值范围是().A.k>4B.k≥4C.k>0D.k>-4二、填空题1.若一次函数y=3x-5与y=2x+7的交点P的坐标为(15,38),则方程组的解为___.2.在同6、一直角坐标系内分别作出一次函数y=2x+3与y=2x-3的图像这两个图像______交点(填”有”或”没有”),由此可知的解的情况是__________.3.在同一直角坐标系内分别作出一次函数y=2x-2与2y=4x-4的图像,这两个图像的关系是_________,由此可知方程组的解的情况是__________.4.分析下列方程组解的情况.①方程组的解 ;②方程组的解 .三、解答题1.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为167、96万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?2.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
3、5)C.(3,-2)D.(-5,-2)3.已知方程2x+1=-x+4的解是x=1,则直线y=2x+1与y=-x+4的交点是()A.(1,0)B.(1,3)C.(-1,-1)D.(-1,5)4.直线AB∥x轴,且A点坐标为(1,-2),则直线AB上任意一点的纵坐标都是-2,此时我们称直线AB为y=-2,那么直线y=3与直线x=2的交点是()A.(3,2)B.(2,3)C.(-2,-3)D.(-3,-2)二、填空题1.已知直线y=ax+b经过点(1,2)和(2,3),则a=________,b=________.2.解方程组解为________,则直线y=-x+15
4、和y=x-7的交点坐标是________.3.已知函数y=mx-(4m-3)的图象过原点,则m应取值为__________.4.直线y=2x-1与y=x+4的交点是(5,9),则当x_______时,直线y=2x-1上的点在直线y=x+4上相应点的上方;当x_______时,直线y=2x-1上的点在直线y=x+4上相应点的下方.三、解答题1.某超市为“开业三周年”举行了店庆活动.对、两种商品实行打折出售.打折前,购买5件商品和1件商品需用84元;购买6件商品和3件商品需用108元.而店庆期间,购买50件商品和50件商品仅需960元,这比不打折少花多少钱?(B层)
5、拓展知识训练一、选择题1.若一次函数y=k1x+b1与y=k2x+b2的图像没有交点,则方程组的解的情况是().A.有无数组解B.有两组解C.只有一组解D.没有解2.如果一次函数y=3x+6与y=2x-4的交点坐标为(a,b),则是方程组()的解.A.B.C.D.3.若方程组没有解,由此一次函数y=2-x与y=-x的图像必定().A.重合B.平行C.相交D.无法判断4.已知方程组有正数解,则k的取值范围是().A.k>4B.k≥4C.k>0D.k>-4二、填空题1.若一次函数y=3x-5与y=2x+7的交点P的坐标为(15,38),则方程组的解为___.2.在同
6、一直角坐标系内分别作出一次函数y=2x+3与y=2x-3的图像这两个图像______交点(填”有”或”没有”),由此可知的解的情况是__________.3.在同一直角坐标系内分别作出一次函数y=2x-2与2y=4x-4的图像,这两个图像的关系是_________,由此可知方程组的解的情况是__________.4.分析下列方程组解的情况.①方程组的解 ;②方程组的解 .三、解答题1.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为16
7、96万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?2.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
此文档下载收益归作者所有