欢迎来到天天文库
浏览记录
ID:50548591
大小:50.50 KB
页数:4页
时间:2020-03-10
《四年级奥数-高斯求和.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第3讲高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,
2、并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:(1)1,2,3,4,5,…,100;(2)1,3,5,7,9,…,99;(3)8,15,22,29,36,…,71。 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。由高斯的巧算方法,得到等差
3、数列的求和公式:和=(首项+末项)×项数÷2。例11+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。例211+12+13+…+31=?在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+
4、1,末项=首项+公差×(项数-1)。例33+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。例4求首项是25,公差是3的等差数列的前40项的和。例5在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:由上表看出,各层的小三角形数成等差
5、数列,各层的火柴数也成等差数列。解:(1)最大三角形面积为 (1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2)。 2)火柴棍的数目为 3+6+9+…+24=(3+24)×8÷2=108(根)。答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。 练习3 1.计算下列各题:(1)2+4+6+…+200;(2)17+19+21+…+39;(3)5+8+11+14+…+50;(4)3+10+17+24+…+101。2.求首项是5,末项是93,公差是4的等差数列的和
6、。3.求首项是13,公差是5的等差数列的前30项的和。4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?5.求100以内除以3余2的所有数的和。
此文档下载收益归作者所有