欢迎来到天天文库
浏览记录
ID:50466117
大小:1.13 MB
页数:5页
时间:2020-03-09
《中考数学专题 安徽高频考点专题:反比例函数与一次函数的综合.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、安徽高频考点专题:反比例函数与一次函数的综合类型一 判断函数图象1.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是( )2.在同一直角坐标系中,函数y=与y=kx+k2的大致图象是( ) 3.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为( )类型二 求交点坐标4.(阜阳月考)如图,直线y=-x+b与反比例函数y=的图象的一个交点为A(-1,2),则另一个交点B的坐标为【方法3①】( )A.(-2,1)B.(2,1)C.(1,-2
2、)D.(2,-1)第4题图第5题图5.反比例函数y=和正比例函数y=mx的部分图象如图所示,由此可以得到方程=mx的实数根为( )A.x=1B.x=2C.x1=1,x2=-1D.x1=1,x2=-26.(2017·菏泽中考)直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为________.【方法4】类型三 求值或取值范围7.已知一次函数y1=ax+b与反比例函数y2=的图象如图所示,当y1<y2时,x的取值范围是【方法3③】( )A.x<2B.x>5C.0<
3、x<5D.05第7题图第8题图8.(2017·芜湖期末)如图,正比例函数y1=k1x(k1≠0)的图象与反比例函数y2=(k2≠0)的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是【方法3③】( )A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>29.若一次函数y=mx+6与反比例函数y=的图象在第一象限有公共点,则有( )A.mn≥-9B.-9≤mn≤0C.mn≥-4D.-4≤mn≤010.(2017·长沙中考)如图,点M是函数
4、y=x与y=的图象在第一象限内的交点,OM=4,则k的值为________.第10题图第11题图11.(2017·贵港中考)如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=-x+6上.若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是____________.12.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.13.如图,反比例函数y=与一次函数y=
5、ax+b的图象交于点A(2,2),B.(1)求这两个函数的解析式;(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.14.如图,直线y=x+3与y轴交于点A,与x轴交于点C,直线l1与y轴交于点A,与x轴交于点B,且两直线互相垂直.(1)点A的坐标为________,点B的坐标为________,点C的坐标为________;(2)已知双曲线y=-与l1的交点坐标为(-1,k),求k的值;(3)请利用图象直接写出不等式->x+3的解集.类型四 求图形
6、的面积15.(2017·亳州利辛县一模)如图,已知某一次函数与反比例函数的图象相交于A(1,3),B(m,1),求:(1)m的值与一次函数的解析式;(2)△ABO的面积.参考答案与解析1.C 2.C 3.B 4.D 5.C6.36 解析:由题可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=-x2,y1=-y2.把A(x1,y1)代入y=,得x1y1=6,∴3x1y2-9x2y1=-3x1y1+9x1y1=6x1y1=36.7.D 8.D9.A 解析:将y=mx+6代入y=中,得mx+6=,整理得mx2+6x
7、-n=0.∵两个图象有公共点,∴Δ=62+4mn≥0,∴mn≥-9.故选A.10.411.2≤k≤9 解析:当反比例函数的图象过C点时,把C的坐标代入得k=2×1=2.把y=-x+6代入y=得-x+6=,整理得x2-6x+k=0,Δ=(-6)2-4k=36-4k.∵反比例函数y=的图象与△ABC有公共点,∴36-4k≥0,解得k≤9,∴k的取值范围是2≤k≤9.12.解:(1)∵点A(2,1)在一次函数y=x+m的图象上,∴2+m=1,∴m=-1.∵点A(2,1)在反比例函数y=的图象上,∴=1,∴k=2.(2)由(1)
8、可知m=-1,∴一次函数的解析式为y=x-1,令y=0,得x=1,∴点C的坐标是(1,0).由图象可知不等式组0<x+m≤的解集为1<x≤2.13.解:(1)∵A(2,2)在反比例函数y=的图象上,∴k=4,∴反比例函数的解析式为y=.∵点B在反比例函数y=的图象上,∴n=4,解得n=8,∴点B的坐标为.由A(2,2
此文档下载收益归作者所有