资源描述:
《高中数学必修2第二章复习.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、人教A必修2第二章点、直线、平面之间的位置关系3种关系3种问题角度问题平行问题垂直问题直线和平面的位置关系平面和平面的位置关系直线和直线的位置关系知识网络直线和直线的位置关系3种关系分类位置关系定义公共点共面直线相交直线有且仅有一个公共点有公共点平行直线共面且没有公共点异面直线异面直线不同在任何一个平面内没有公共点共面直线2个平面的位置关系3种关系位置关系定义公共点个数两个平面平行没有公共点0个两个平面相交有一条公共直线无数直线和平面的位置关系3种关系1、直线在平面α外,则二者的公共点个数是()A.一个B.至少一个C.至
2、多一个D.无数个C练习2、两条直线没有公共点,则它们的关系是()平行或异面线面平行线线平行面面平行判定1:如果平面外一条直线与平面内的一条直线平行,则这条直线和这个平面平行。判定2:如果一个平面内有两条相交直线与另一个平面平行,则这2个平面平行平行问题3种问题判定1判定2性质1性质2线面平行线线平行面面平行性质1:如果直线a与平面α平行,若经过a的平面β与α的交线为b,则a∥b性质2:如果2个平面平行,则它们被第三个平面所截得的两条交线平行平行问题3种问题判定1判定2性质1性质2如果平面外一条直线与平面内的一条直线平行,
3、则这条直线和这个平面平行。直线与平面平行的判定定理abα平行问题3种问题注意3个条件要写全a线∥线的证明是关键!如何证明两条直线平行?(1)利用三角形的中位线;(3)平行的传递性(2)利用平行四边形;平行问题3种问题平行的传递性:a∥b,a∥c,则b∥c如何证明一个四边形是平行四边形?(1)一组对边平行且相等;(2)两组对边分别平行平行问题3种问题四棱锥P-ABCD中,底面ABCD是平行四边形,E、F是所在侧棱中点,求证:EF∥平面PAB证明:设PA的中点为M,连接ME,MB,在△PAD中,ME平行且等于AD的一半,故M
4、E平行且等于BF,故四边形MEFB是平行四边形,于是EF∥MB,又EF在平面PAB外,MB在平面PAB内,故EF∥平面PAB平行问题3种问题典型例题1.平行于同一平面的二直线的位置关系是()(A)一定平行(B)平行或相交(C)相交(D)平行,相交,异面D2判断:直线a∥平面α,则直线a平行于α内的任意直线错平行问题3种问题练习(A)平行(B)(C)(D)相交平行或相交平行或异面3、直线a//平面,那么直线a与平面内直线b的位置关系是:平行问题3种问题ABCDEFGH4、空间四边形ABCD中E,F,G,H分别是各边中点
5、。则图中与面EFGH平行的边有()条。(A)1(B)2(C)0(D)4B平行问题4种问题5、平行于同一平面的二直线的位置关系是()(A)一定平行(B)平行或相交(C)相交(D)平行,相交,异面D平行问题4种问题6、点A是平面外的一点,过A和平面平行的直线有条。无数平行问题3种问题线线垂直线面垂直面面垂直性质1判定2判定1:如果一条直线与平面内的2条相交直线垂直,则这条直线和这个平面垂直判定2:如果一个平面内经过另一个平面的垂线,则这2个平面垂直性质2垂直问题3种问题判定1线线垂直线面垂直面面垂直性质1判定2性质1:如
6、果两条直线都与一个平面垂直,则这两条直线平行性质2:如果两个平面垂直,则在一个平面内与交线垂直的直线垂直于另一个平面性质2垂直问题3种问题判定1直线与平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,则直线与平面垂直。n,m,m与n相交,lm,ln,l1、如果直线和平面垂直,则直线垂直面内的任意直线L性质定理2、如果两条直线都和某平面垂直,则这两直线平行垂直问题3种问题线线垂直平面几何的方法立体几何的方法1、勾股定理2、等腰(边)三角形底边上的中线与底边垂直3、正(长)方形的特点两条平行线
7、中的一条与某直线,则另一条也垂直于该直线直线a与平面α垂直,则a垂直于α内的任意直线)4、直径对的圆周角为90度垂直问题3种问题在正方体AC1中,O为下底面的中心,求证:AC⊥面D1B1BD证明:∵ABCD为正方形,所以ACBD,又因为在正方体中,BB1⊥平面ABCD,所以ACBB1,又BD∩BB1=B,故AC⊥面D1B1BD垂直问题3种问题典型例题(1)l,mlm(2)n,m,lm,ln,l(3)l,mlm(4)l//m,lm//判断对错对对垂直问题3种问题如果一个
8、平面经过另一个平面的一条垂线,则这两个平面互相垂直ABDC两个平面垂直的判定定理αβABβABαβ垂直问题3种问题线⊥面得到面⊥面在正方体ABCD-A1B1C1D1中,求证:ABCDA1B1C1D1垂直问题3种问题典型例题证明:因为是正方体,所以AC⊥BD,又AA1⊥平面ABCD,故AA1⊥BD,因为AC∩B