资源描述:
《等边三角形的判定.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、BS八(下)教学课件第一章三角形的证明1.1等腰三角形第4课时等边三角形的判定及含30°角的直角三角形的性质学习目标1.能用所学的知识证明等边三角形的判定定理.(重点)2.掌握含30°角的直角三角形的性质并解决有关问题.(难点)观察下面图片,说说它们都是由什么图形组成的?新课引入一个三角形满足什么条件就是等边三角形?由等腰三角形的判定定理,可得等边三角形的两个判定定理:1.三个角都相等的三角形是等边三角形;2.有一个角等于60°的等腰三角形是等边三角形.你能证明这些定理吗?新课讲解等边三角形的判定1ABC已知:如图,∠A=∠B
2、=∠C.求证:AB=AC=BC.∵∠A=∠B,∴AC=BC.∵∠B=∠C,∴AB=AC.∴AB=AC=BC.证明:新课讲解定理2:有一个角是60°的等腰三角形是等边三角形.ABC已知:若AB=AC,∠A=60°.求证:AB=AC=BC.证明:∵AB=AC,∠A=60°.∴∠B=∠C=(180。-∠A)=60°.∴∠A=∠B=∠C.∴AB=AC=BC.证明完整吗?是不是还有另一种情形呢?新课讲解证明:∵AB=AC,∠B=60°(已知),∴∠C=∠B=60°(等边对等角),∴∠A=60°(三角形内角和定理).∴∠A=∠B=∠C=6
3、0°.∴△ABC是等边三角形(三个角都相等的三角形是等边三角形).已知:如图,在△ABC中,AB=AC,∠B=60°.求证:△ABC是等边三角形.第二种情况:有一个底角是60°.ACB60°【验证】新课讲解等边对等角等角对等边“三线合一”,即等腰三角形顶角平分线,底边上的中线、高线互相重合有一角是60°的等腰三角形是等边三角形等边三角形三个内角都相等,且每个角都是60°三个角都相等的三角形是等边三角形归纳总结练习:如图,在等边三角形ABC中,DE∥BC.求证:△ADE是等边三角形.ACBDE证明:∵△ABC是等边三角形,∴∠A
4、=∠B=∠C.∵DE//BC,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.新课讲解操作:用两个含有30°角的三角板,你能拼成一个怎样的三角形?30°30°你能说出所拼成的三角形的形状吗?猜想:在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?30°30°30°30°30°新课讲解含30°角的直角三角形的性质2已知:如图,在△ABC中,∠ACB=90°,∠A=30°.求证:BC=AB.A30°BC分析:突破如何证明“线段的倍、分”问题转化“线段相等”问题30°30°新课讲解证一
5、证∵∠ACB=90°,(已知)∴∠ACD=90°,(平角意义)在△ABC与△ADC中,BC=DC,(作图)∠ACB=∠ACD,(已证)AC=AC,(公共边)∴△ABC≌△ADC(SAS),∴AD=AB;∵∠ACB=90°,∠BAC=30°,(已知)∴∠B=60°,∴△ABD是等边三角形,(有一个角是60°的等腰三角形是等边三角形)∴BC=BD=AB.(等式性质)30°ABCD证明:延长BC至D,使CD=BC,连接AD,新课讲解定理:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.几何语言:在△ABC
6、中,∵∠ACB=90°,∠A=30°.∴BC=AB.(在直角三角形中,30°角所对的直角边等于斜边的一半)ABC30°推论:归纳总结1.已知△ABC中,∠A=∠B=60°,AB=3cm,则△ABC的周长为______cm.92.在△ABC中,∠B=90°,∠C=30°,AB=3.则AC=_____;BC=_______.ABC330°6随堂即练CBAD练习2:如图,在△ABC中,已知AB=AC=2a,∠B=∠ACB=15°,CD是腰AB上的高,求CD的长.解:∵∠B=∠ACB=15°,(已知)∴∠DAC=∠B+∠ACB=15°
7、+15°=30°,∵∠ADC=90°,∴CD=AC=a.(在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半)新课讲解1.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.三个角都相等的三角形是等边三角形.2.特殊的直角三角形的性质:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.数学方法:分类的思想.课堂小结