变量与函数课件.ppt

变量与函数课件.ppt

ID:48710945

大小:852.05 KB

页数:27页

时间:2020-01-19

变量与函数课件.ppt_第1页
变量与函数课件.ppt_第2页
变量与函数课件.ppt_第3页
变量与函数课件.ppt_第4页
变量与函数课件.ppt_第5页
资源描述:

《变量与函数课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学目标123掌握常量和变量、自变量和因变量(函数)基本概念;了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系。通过实际问题,引导学生直观感知,领悟函数基本概念的意义。知识与技能过程与方法情感、态度与价值观引导学生联系代数式和方程的相关知识,继续探索数量关系,掌握常量和变量、自变量和因变量(函数)基本概念。创设情境(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温。(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?创设情境(1)这天的6时、10时和14时的气

2、温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃。最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高。0时~3时和14时~24时的气温在逐渐降低。创设情境随着时间t(时)的变化,相应地气温T(℃)也随之变化。新知介绍观察上表,说说随着存期x的增长,相应的年利率y是如何变化的。例题3探究新知1银行利率随着存期x的增长,相应的年利率y也随着增长。例题3探究新知1银行利率观察上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大,频率f就________。例题3探究新知2收音机波段解(1)l与f的乘积是一个定值,即lf=300000。(2)波长l越大,频率f就越小。

3、例题3探究新知2收音机波段例题3探究新知3圆的面积圆的面积随着半径的增大而增大。如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=。利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________。πr2越大归纳总结4变量与函数在某一变化过程中,可以取不同数值的量,叫做变量。在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数。归纳总结4变量与函数问题的研究过程中,还有一种量,它的取值始终保持不变

4、,我们称之为常量。如问题2中的300000,问题3中的π等。归纳总结4变量与函数表示函数关系的方法通常有三种:(1)解析法,如问题2中的,问题3中的S=πr2,这些表达式称为函数的关系式。(2)列表法,如问题1中的利率表,问题3中的波长与频率关系表。(3)图象法,如气温曲线。实践应用生活中的例子1实践应用举3个日常生活中遇到的函数关系的例子。汽车以60km/h的速度匀速行驶,行驶的时间为th,行驶的路程为skm;行驶的路程为s随时间t的增加了变化。生活中的例子1实践应用票房收入为y=10x,x、y是变量,10是常量。生活中的例子1实践应用随着时间h(时)的变化,相应地气温T(℃)也随之变化。平

5、均身高2实践应用写出关系式3实践应用交流反思例题3交流反思1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系。2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量。例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量。3.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图象法。我知道了检测反馈写出常量与变量1检测反馈变量是S和h,常量是变量是β和α,常量是90变量是y和,常量是a写出关系式2检测反馈(1)Y=2n,自变量是n,因变量是Y.(2)n=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。