资源描述:
《直线与圆锥曲线的位置关系.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直线与圆锥曲线的位置关系一、知识整理:1.考点分析:此部分的解答题以直线与圆锥曲线相交占多数,并以椭圆、抛物线为载体较多。多数涉及求圆锥曲线的方程、求参数的取值范围等等。2.解答直线与圆锥曲线相交问题的一般步骤:设线、设点,联立、消元,韦达、代入、化简。第一步:讨论直线斜率的存在性,斜率存在时设直线的方程为y=kx+b(或斜率不为零时,设x=my+a);第二步:设直线与圆锥曲线的两个交点为A(x1,y1)B(x2,y2);第三步:联立方程组,消去y得关于x的一元二次方程;第四步:由判别式和韦达定理列出直线与曲线相交满足的条件,第五步
2、:把所要解决的问题转化为x1+x2、x1x2,然后代入、化简。3.弦中点问题的特殊解法-----点差法:即若已知弦AB的中点为M(xo,yo),先设两个交点为A(x1,y1),B(x2,y2);分别代入圆锥曲线的方程,得,两式相减、分解因式,再将代入其中,即可求出直线的斜率。4.弦长公式:(k为弦AB所在直线的斜率)二、例题分析:例1.(2008湖北文)已知双曲线的两个焦点为,点在曲线C上.(Ⅰ)求双曲线C的方程;(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程例2..
3、(2005湖北文、理)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(只做第一问)例3.(2007重庆文)如图,倾斜角为α的直线经过抛物线的焦点F,且与抛物线交于A、B两点.(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;(Ⅱ)若α为锐角,作线段AB的垂直平分线m交x轴于点P,证明
4、FP
5、-
6、FP
7、cos2α为定值,并求此定值.三、基础训练:1.(2005广东)在平面
8、直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图4所示).△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2.(2008广东文、理)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必
9、具体求出这些点的坐标).四.巩固练习:1.(2007广东文、理)在平面直角坐标系xOy巾,已知圆心在第二象限、半径为的圆C与直线相切于坐标原点0.椭圆与圆c的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.2.(2007四川理)设、分别是椭圆的左、右焦点.(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的
10、取值范围.直线与圆锥曲线的位置关系(参考答案)二、例题分析:例1.(Ⅰ)解法1:依题意,由a2+b2=4,得双曲线方程为(0<a2<4),将点(3,)代入上式,得.解得a2=18(舍去)或a2=2,故所求双曲线方程为解法2:依题意得,双曲线的半焦距c=2.2a=
11、PF1
12、-
13、PF2
14、=∴a2=2,b2=c2-a2=2.∴双曲线C的方程为(Ⅱ)解:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.∵直线I与双曲线C相交于不同的两点E、F,∴∴k∈(-)∪(1,).设E(x1,y1),
15、F(x2,y2),则由①式得x1+x2=于是
16、EF
17、==而原点O到直线l的距离d=,∴SΔOEF=若SΔOEF=,即解得k=±,满足②.故满足条件的直线l有两条,其方程分别为y=和例2.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,∴②且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范围是(12,+∞).于是,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,∴又由N(1,3)在椭圆内,∴∴的取值范围是(12,+∞).直线AB的方程为y-3=-(x-1),即x+y-4
18、=0.(Ⅱ)解:∵CD垂直平分AB,∴直线CD的方程为y-3=x-1,即x-y+2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,∴于是由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存