资源描述:
《数学人教版八年级下册平行四边形判定 .ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、平行四边形的判定(1)开动脑筋有一天,李老师的儿子从幼儿园放学来到办公室,看到郑老师办公桌上一块平行四边形纸片,于是就拿起笔来画画,画了一会儿,对自已的作品不满意撕去了一些,巧的是刚好从A、C两个顶点撕开。你只有两把没刻度的直尺,你能帮它补好吗?ABCD∵AB∥CDBC∥AD∴四边形ABCD是平行四边形好汉回头平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.有两组对边分别平行的四边形叫做平行四边形平行四边形的定义ABCD四边形ABCD如果AB∥CDAD∥BCBDABCDACBDACO平行四边形的性质:边平行四边形的对边平行平行四边形的对边相等角平行四边形的对角相等平行四边形
2、的邻角互补对角线平行四边形的对角线互相平分∵四边形ABCD是平行四边形∴AB=CDAD=BC∴AB∥CDAD∥BC开动脑筋有一天,李老师的儿子从幼儿园放学来到办公室,看到郑老师办公桌上一块平行四边形纸片,于是就拿起笔来画画,画了一会儿,对自已的作品不满意撕去了一些,巧的是刚好从A、C两个顶点撕开。你只有尺规,你能帮它补好吗?ABCD∵AB=CDBC=AD∴四边形ABCD是平行四边形BCAD通过以上活动你得到了什么结论?命题1:两组对边相等的四边形是平行四边形BDAC已知:四边形ABCD,AB=CD,AD=BC求证:四边形ABCD是平行四边形2134连结AC,∵AB=CD,AD=BC(
3、已知)又∵AC=AC(公共边)∴△ABC≌△CDA(SSS)证明:∴∠1=∠2,∠3=∠4(全等三角形的对应边相等)∴AB∥CD,AD∥BC(内错角相等,两直线平行)∴四边形ABCD是平行四边形平行四边形判定平行四边形的判定定理1:两组对边分别相等的四边形是平行四边形。ABCD∵AB=CD,AD=BC(已知)∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形。)如图,AB=DC=EF,AD=BC,DE=CF,则图中有哪些互相平行的线段?看谁最快AB∥DC∥EFAD∥BCDE∥CF学习了平行四边形后,小明回家用细木棒钉制了一个。第二天,小明拿着自己动手做的平行四边形向同
4、学们展示。小辉却问:你凭什么确定这四边形就是平行四边形呢?大家都困惑了……请你帮忙BDAC∠A+∠B=180°AD∥BC小锋提议:我们可以度量它的角,如果它的两组对角分别相等,那么它就是一个平行四边形。已知:四边形ABCD,∠A=∠C,∠B=∠D求证:四边形ABCD是平行四边形ABCD∠A+∠D=180°AB∥CD∠A+∠B+∠C+∠D=360°BDAC已知:四边形ABCD,∠A=∠C,∠B=∠D求证:四边形ABCD是平行四边形∵∠A=∠C,∠B=∠D(已知)又∵∠A+∠B+∠C+∠D=360°∴2∠A+2∠B=360°证明:即∠A+∠B=180°∴AD∥BC(同旁内角互补,两直线平
5、行)同理可证AB∥CD∴四边形ABCD是平行四边形平行四边形判定平行四边形的判定定理2:两组对角分别相等的四边形是平行四边形。ABCD∵∠A=∠C,∠B=∠D(已知)∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形。)小丽却说:“我可以不用任何作图工具,只要两条细绳就能判断它是不是平行四边形。”只见小丽用两条细绳做四边形的对角线,并在两条对角线的交点处作了个记号。然后分别把两条对角线沿记号点对折,发现它们被记号点分成的两段线段都能重合,小丽高兴地说:“这的确是个平行四边形!”你认为小丽的做法有根据吗?BDACO已知:四边形ABCD,AC、BD交于点O且OA=OC,O
6、B=OD求证:四边形ABCD是平行四边形试一试4213证明:∵AO=CO,BO=DO,∠1=∠2∴△AOB≌△COD∴AB∥CD同理AD∥BC∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)∴∠3=∠4BCADO已知:如图,四边形对角线相交于点o,且OA=OC、OB=OD.求证:四边形ABCD是平行四边形证明:在△AOB和△COD中∴△AOB≌△COD(SAS)∴AB=CD同理:AD=CB∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形。)OA=OCOB=OD∠AOB=∠COD数学语言表示为;∵AO=OC,BO=OD∴四边形ABCD是平行四边形判
7、定文字语言图形语言符号语言定义两组对边分别平行的四边形是平行四边形∵AB∥CD,AD∥BC∴…是平行四边形定理1两组对边分别相等的四边形是平等四边形∵AB=CD,AD=BC∴…是平行四边形定理2对角线互相平分的四边形是平行四边形∵OA=OC,OB=OD∴…是平行四边形ABCDABCDABCDO谢谢合作!再见