2017年八年级七年级数学下册12.2完全平方公式学好完全平方公式的三点提示素材(新版)青岛版

2017年八年级七年级数学下册12.2完全平方公式学好完全平方公式的三点提示素材(新版)青岛版

ID:48316915

大小:70.50 KB

页数:2页

时间:2019-11-01

2017年八年级七年级数学下册12.2完全平方公式学好完全平方公式的三点提示素材(新版)青岛版_第1页
2017年八年级七年级数学下册12.2完全平方公式学好完全平方公式的三点提示素材(新版)青岛版_第2页
资源描述:

《2017年八年级七年级数学下册12.2完全平方公式学好完全平方公式的三点提示素材(新版)青岛版》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、学好完全平方公式的三点提示完全平方公式是两个形式相同的多项式相乘得到的公式,它的应用十分广泛,是教材中的重点和难点.那么如何掌握完全平方公式呢?下面给予三点提示,供参考.一、意义特征要牢记1、完全平方公式:(1)(a+b)2=a2+2ab+b2;(2)(a-b)2=a2-2ab+b22、文字描述:这两个公式的左边是一个二项式的完全平方,右边是三项式,而且每一项都是二次式,其中有两项是公式左边二项式中每一项的平方,而第三项是左边二项式中两项乘积的2倍(或-2倍).可用以下口诀来记忆:“头平方和尾平方

2、,头(乘)尾两倍在中央,中间符号是一样”.这里的“头”指的是a,“尾”指的是b.这两个公式实质上是统一的,即都是二项式的平方展开式.其中第一个公式是基本的,第二个公式可由第一个公式导出.如:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.3、完全平方公式的几何意义在图1中,大正方形的面积是(a+b)2,它等于两个小正方形的面积a2、b2及两个等积的长方形面积ab的和,因此有(a+b)2=a2+2ab+b2.在图2中,大正方形的面积是a2,它等于两个小正方形的面

3、积b2、(a-b)2及两个等积的长方形面积(a-b)b的和,因此有(a-b)2=a2-2(a-b)b-b2=a2-2ab+b2.二、两个公式的区别要清楚在运用完全平方公式时,经常会出现类似于(a+b)2=a2+b2、(a-b)2=a2-b2的错误.要注意从以下几个方面进行区别:(1)意义不同:(a+b)2表示数a与数b和的平方,(a-b)2表示数a与数b差的平方;而a2+b2表示数a的平方与数b的平方和,a2-b2表示数a的平方与数b的平方差.(2)读法不同:(a+b)2读作两数a、b和的平方,(

4、a-b)2读作两数a、b差的平方;而a2+b2读作两数a、b平方的和,a2-b2读作两数a、b平方的差.(3)运算顺序不同:(a+b)2的运算顺序是先算a+b,然后再算和的平方,(a-b)2的运算顺序是先算a-b,然后再算差的平方;而a2+b2是先算a2与b2,再求和a2+b2,a2-b2是先算a2与b2,再求差a2-b2.(4)一般情况下它们的值不相等:如当a=2,b=1时,(a+b)2=(2+1)2=32=9,(a-b)2=(2-1)2=12=1;而a2+b2=22+12=5,a2-b2=22

5、-12=3.三、应用方法要掌握完全平方公式中的字母可以表示具体的数,也可以表示单项式,还可以表示多项式及各种代数式.应用时要认真观察题目是否符合公式的特征和条件,变形后是否符合公式的特征和条件,若符合,再把公式中的字母同具体题目中的数或式对照,再逐项对照着计算;若不符合就不能应用公式.要搞清楚公式中各项的符号,灵活地进行公式的各种变形应用.例1、计算分析:把看成a,看成b,原式即为两项差的平方,然后套用完全平方差公式.解:=+()2=例2、计算:(a-2b-c)2分析:可以把(a-2b)看作公式中

6、a,把c看作公式中的b,然后套用完全平方差公式.解:=.说明:本题还可以进行如下变形:或

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。