立体几何专题有答案.doc

立体几何专题有答案.doc

ID:48033309

大小:1.15 MB

页数:16页

时间:2020-01-19

立体几何专题有答案.doc_第1页
立体几何专题有答案.doc_第2页
立体几何专题有答案.doc_第3页
立体几何专题有答案.doc_第4页
立体几何专题有答案.doc_第5页
资源描述:

《立体几何专题有答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.....立体几何答案翰林学校宗克志26.【2012高考辽宁理18】(本小题满分12分)如图,直三棱柱,,点M,N分别为和的中点。(Ⅰ)证明:∥平面;(Ⅱ)若二面角为直二面角,求的值。【命题意图】本题主要考查线面平行的判定、二面角的计算,考查空间想象能力、运算求解能力,是容易题.【解析】(1)连结,由已知三棱柱为直三棱柱,所以为中点.又因为为中点所以,又平面平面,因此……6分(2)以为坐标原点,分别以直线为轴,轴,轴建立直角坐标系,如图所示设则,于是,所以,设是平面的法向量,由得,可取设是平面的法向量,由得,可取因为为直二面角,所以,解得……12分【点评】本题以三棱柱为载体主

2、要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明。word可编辑.......27.【2012高考湖北理19】(本小题满分12分)如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.DABCACDB图2图1ME.·第19题图【答

3、案】(Ⅰ)解法1:在如图1所示的△中,设,则.由,知,△为等腰直角三角形,所以.由折起前知,折起后(如图2),,,且,所以平面.又,所以.于是,当且仅当,即时,等号成立,故当,即时,三棱锥的体积最大.解法2:同解法1,得.令,由,且,解得.当时,;当时,.所以当时,取得最大值.故当时,三棱锥的体积最大.(Ⅱ)解法1:以为原点,建立如图a所示的空间直角坐标系.由(Ⅰ)知,当三棱锥的体积最大时,,.于是可得,,,,,,且.设,则.因为等价于,即word可编辑.......,故,.所以当(即是的靠近点的一个四等分点)时,.设平面的一个法向量为,由及,得可取.设与平面所成角的大小为,

4、则由,,可得,即.CADB图aEMxyz图bCADBEFMN图cBDPCFNEBGMNEH图d第19题解答图N故与平面所成角的大小为解法2:由(Ⅰ)知,当三棱锥的体积最大时,,.如图b,取的中点,连结,,,则∥.由(Ⅰ)知平面,所以平面.如图c,延长至P点使得,连,,则四边形为正方形,所以.取的中点,连结,又为的中点,则∥,所以.因为平面,又面,所以.又,所以面.又面,所以.因为当且仅当,而点F是唯一的,所以点是唯一的.即当(即是的靠近点的一个四等分点),.连接,,由计算得,word可编辑.......所以△与△是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,,则

5、平面.在平面中,过点作于,则平面.故是与平面所成的角.在△中,易得,所以△是正三角形,故,即与平面所成角的大小为31.【2012高考福建理18】如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长.【答案】本题主要考查立体几何中直线与直线、直线与平面的位置关系及二面角的概念与求法等基础知识,考查空间想象能力、推理论证能力、基本运算能力,以及函数与方程的思想、

6、数形结合思想、化归与转化思想.解答:(Ⅰ)长方体中,得:面面(Ⅱ)取的中点为,中点为,连接在中,面此时(Ⅲ)设,连接,过点作于点,连接面,word可编辑.......得:是二面角的平面角在中,在矩形中,得:32.【2012高考北京理16】(本小题共14分)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(I)求证:A1C⊥平面BCDE;(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;(III)线段BC上是否存在点P,使平面A1DP与平

7、面A1BE垂直?说明理由【答案】解:(1),平面,又平面,又,平面。(2)如图建系,则,,,∴,设平面法向量为word可编辑.......则∴∴∴又∵∴∴,∴与平面所成角的大小。(3)设线段上存在点,设点坐标为,则则,设平面法向量为,则∴∴。假设平面与平面垂直,则,∴,,,∵,∴不存在线段上存在点,使平面与平面垂直。33.【2012高考浙江理20】(本小题满分15分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(Ⅰ)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。