课时跟踪检测(二十七)正弦定理和余弦定理应用

课时跟踪检测(二十七)正弦定理和余弦定理应用

ID:47226677

大小:254.50 KB

页数:8页

时间:2019-06-01

课时跟踪检测(二十七)正弦定理和余弦定理应用_第1页
课时跟踪检测(二十七)正弦定理和余弦定理应用_第2页
课时跟踪检测(二十七)正弦定理和余弦定理应用_第3页
课时跟踪检测(二十七)正弦定理和余弦定理应用_第4页
课时跟踪检测(二十七)正弦定理和余弦定理应用_第5页
资源描述:

《课时跟踪检测(二十七)正弦定理和余弦定理应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第8页共8页课时跟踪检测(二十七)正弦定理和余弦定理的应用一抓基础,多练小题做到眼疾手快1.如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的(  )A.北偏东10°    B.北偏西10°C.南偏东80°D.南偏西80°解析:选D 由条件及图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.2.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=3

2、0°,CD=30m,并在点C测得塔顶A的仰角为60°,则塔高AB等于(  )A.5mB.15mC.5mD.15m解析:选D 在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,解得BC=15(m).在Rt△ABC中,AB=BCtan∠ACB=15×=15(m).3.在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=(  )A.B.C.D.解析:选B 由已知条件可得图形,如图所示,设CD=a,在△ACD中,CD2=AD2+AC2-2AD×AC×cos∠DAC,∴a2=(a)2+(a

3、)2-2×a×a×cos∠DAC,∴cos∠DAC=.4.已知A船在灯塔C北偏东80°处,且A到C的距离为2km,B船在灯塔C北偏西40°,A,B两船的距离为3km,则B到C的距离为________km.解析:由条件知,∠ACB=80°+40°=120°,设BC=xkm则由余弦定理知9=x2+4-4xcos120°,∵x>0,∴x=-1.第8页共8页答案:-15.某同学骑电动车以24km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔

4、的距离是________km.解析:如题图,由题意知AB=24×=6,在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,∴∠ASB=45°,由正弦定理知=,∴BS==3(km).答案:3二保高考,全练题型做到高考达标1.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(  )A.10海里       B.10海里C.20海里D.20海里解析:选A 如

5、图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=,解得BC=10(海里).2.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的最短时间为6min,则客船在静水中的速度为(  )A.8km/hB.6km/hC.2km/hD.10km/h解析:选B 设AB与河岸线所成的角为θ,客船在静水中的速度为vkm/h,由题意知,sinθ==,从而cosθ=,所以由余弦定理得2=2+12-2××2×1

6、×,解得v=6.3.(2014·四川高考)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m第8页共8页,则河流的宽度BC等于(  )A.240(-1)mB.180(-1)mC.120(-1)mD.30(+1)m解析:选C ∵tan15°=tan(60°-45°)==2-,∴BC=60tan60°-60tan15°=120(-1)(m),故选C.4.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m

7、到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是(  )A.50mB.100mC.120mD.150m解析:选A 设水柱高度是hm,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.5.(2017·厦门模拟)在不等边三角形ABC中,角A,B,C所对的边分别为a,b,c,其中a为最大边,如果sin2(B+C)

8、值范围为(  )A.B.C.D.解析:选D 由题意得sin2A0.则co

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。