高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版

高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版

ID:46774436

大小:68.18 KB

页数:4页

时间:2019-11-27

高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版_第1页
高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版_第2页
高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版_第3页
高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版_第4页
资源描述:

《高中数学第一章分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理练习新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1课时分类加法计数原理与分步乘法计数原理[A 基础达标]1.从甲地到乙地一天有汽车8班,火车2班,轮船3班,某人从甲地到乙地,共有不同的走法种数为(  )A.13          B.16C.24D.48解析:选A.由分类加法计数原理可知,不同的走法种数为8+2+3=13(种).2.(2019·郑州高二检测)如图,一条电路从A处到B处接通时,可构成线路的条数为(  )A.8B.6C.5D.3解析:选B.从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为2×3=

2、6(条),故选B.3.(2019·西安高二检测)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为(  )A.40B.16C.13D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13(个)不同的平面.4.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是(  )A.81B.64C.48D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),

3、故选A.5.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是(  )A.15B.12C.5D.4解析:选A.分三类情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15(个).6.十字路口来往的车辆,如果不允许回头,则不同的行车路线有________种.解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线

4、;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12(种)不同的行车路线.答案:127.已知集合A={0,3,4},B={1,2,7,8},集合C={x

5、x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:78.(2019·海口高二检测)已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函

6、数个数为________.解析:若y=ax2+bx+c为二次函数,则a≠0,要完成该事件,需分步进行:第一步,对系数a有4种选法;第二步,对系数b有5种选法;第三步,对系数c有5种选法.所以共有4×5×5=100(个)不同的二次函数.答案:1009.现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人作中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选

7、1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×

8、10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(2019·长沙高二检测)已知集合A={a,b,c},集合B={-1,0,1}.(1)从集合A到B能构造多少个不同的函数?(2)满足f(a)+f(b)+f(c)=0的函数有多少个?解:(1)每个元素a,b,c都可以有3个数和它对应,故从A到B能构造3×3×3=27(个)不同的函数.(2)列表如下:f(a)00011-1-1f(b)01-10-110f(c)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。