欢迎来到天天文库
浏览记录
ID:43528705
大小:314.92 KB
页数:18页
时间:2019-10-09
《(鲁京津琼专用)2020版高考数学复习第十二章概率、随机变量及其分布12.4二项分布与正态分布教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§12.4 二项分布与正态分布最新考纲 1.在具体情境中,了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.3.通过实际问题,借助直观(如实际问题的直方图)认识正态分布曲线的特点及曲线所表示的意义.1.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B
2、A)来表示,其公式为P(B
3、A)=(P(A)>0).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B
4、A)=.(2)条件概率具有的性质①0≤
5、P(B
6、A)≤1;②如果B和C是两个互斥事件,则P(B∪C
7、A)=P(B
8、A)+P(C
9、A).2.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若A与B相互独立,则P(B
10、A)=P(B),P(AB)=P(B
11、A)P(A)=P(A)P(B).(3)若A与B相互独立,则A与,与B,与也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一
12、次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线:函数φμ,σ(x)=
13、,x∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示一般地,如果对于任
14、何实数a,b(a
15、A)与P(A
16、B)是一回事吗?提示 不一样,P(B
17、A)是在A发生的条件下B发生的概率,P(A
18、B)是在B发生的条件下A发生的概率.2.“事件相互独立”与“事件互斥”有何不同?提示 两事件互斥是
19、指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)条件概率一定不等于它的非条件概率.( × )(2)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × )(3)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1-p.( × )(4)P(B
20、A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率.( √
21、)(5)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( √ )(6)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( √ )题组二 教材改编2.天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( )A.0.2B.0.3C.0.38D.0.56答案 C解析 设甲地降雨为事件A,乙地降雨为事件B,则两地恰有一地降雨为A+B,∴P(A+
22、B)=P(A)+P(B)=P(A)P()+P()P(B)=0.2×0.7+0.8×0.3=0.38.3.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A.B.C.D.答案
此文档下载收益归作者所有