极限定理样本及抽样分布

极限定理样本及抽样分布

ID:41937167

大小:1.08 MB

页数:32页

时间:2019-09-05

极限定理样本及抽样分布_第1页
极限定理样本及抽样分布_第2页
极限定理样本及抽样分布_第3页
极限定理样本及抽样分布_第4页
极限定理样本及抽样分布_第5页
资源描述:

《极限定理样本及抽样分布》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章极限定理X~B(n,p),以Xi表示第i次试验A发生的次数以X表示n重贝努里试验A发生次数EX=np,DX=npq,大数定律Xi独立同分布中心极限定理Xi独立同分布,且E(Xi)=μ,D(Xi)=б25.1大数定律大数定律表达了大量随机变量平均值的稳定性..,...,,1}{lim21aYaYYYaYPPnnnn¾®¾=<-¥®记为依概率收敛于则称序列对于任意正数e,有定义5.1设随机变量序列Y1,Y2…Yn,a是常数,Le贝努利大数定律以nA是n次贝努利试验中A出现的次数,P(A)=p,则当n→∞时,有:表达了频率的稳定性.X~B(n,p)

2、,X表示n重贝努里试验中A发生次数.第i次试验中A发生第i次试验中A不发生有辛钦大数定律设随机变量X1,X2…Xn…相互独立,服从同一分布,数学期望E(Xi)=(i=1,2…),则对于任意正数,有表达了随机变量算术平均值的稳定性.例5.2设电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率是0.7,假定开关时间彼此独立,估计夜晚同时开着的灯数在6800与7200之间的概率.解:设X表示同时开着的灯数,有X~b(10000,0.7).E(X)=7000,D(X)=2100,5.2中心极限定理观察结果表明:大量相互独立的随机变量之和,每个随机变量

3、对总和的影响都很小,近似服从正态分布.独立同分布的中心极限定理设X1,X2…..Xn独立同分布,E(Xi)=μ,D(Xi)=б2,当n充分大时,有即例5.3一个螺丝钉重量时一个随机变量,期望值是1两,标准差是0,1两.求一盒(100个)同型号螺丝钉的重量超过10.2斤的概率.解设一盒重量为X,第i个螺丝钉重量为Xi,有E(Xi)=1,D(Xi)=0.01,有X~N(100,1).例5.4对敌人的防御地进行100次轰炸,每次轰炸命中目标的炸弹数是随机变量,期望值2,方差1.69.求在100次轰炸中有180到220颗炸弹命中目标的概率.解:以Xi表示第

4、i次轰炸中命中目标的炸弹数,则有X近似服从N(200,169).设X~B(n,p),则X表示n重贝努里试验中A发生次数.第i次试验中A发生第i次试验中A不发生德莫佛-拉普拉斯定理设随机变量X~B(n,p),则当n充分大时,有即例已知生男孩的概率为0.515,求在10000新生儿中女孩不少于男孩的概率.解:以X表示10000个新生儿中的男孩数,则X~b(10000,0.515),X近似服从正态分布N(5150,2498)所求概率为P{X≦5000}例保险公司有10000个同龄同阶层的人参加人寿保险,该类人一年内死亡的概率为0.006,每个参保的人在年

5、初付12元保险费,死亡时家属可领得1000元.问保险公司亏本的概率.解:设这10000人中一年内死亡的人数为X,则X~b(10000,0.006),X近似服从正态分布N(60,59.64)P{亏本}=P{X>120}第六章样本及抽样分布第一节随机样本研究对象的全体称为总体.每一个元素称为个体.总体用随机变量X表示.从总体中随机独立抽取一部分个体进行观察,所抽得的个体称为样本.样本的观察值x1,x2….xn称为样本值.总体X的分布函数为F(x),则样本X1,X2….Xn的联合分布函数样本用随机变量X1,X2…Xn表示.例考察某种型号灯泡的寿命,设为X

6、,总体X服从指数分布E(),从中随机独立抽取5个个体,设为X1,X2…X5,x1=1010,x2=1020,x3=1000,x4=990,x5=980。X可能为0到正无穷上任一值。则X1,X2…X5相互独立且Xi~E(),例考察某厂家生产的彩电是否合格,总体X~(0-1)分布,从中随机独立抽取5台,则X1,X2…X5相互独立且Xi~(0-1)分布.x1=1,x2=0,x3=1,x4=0,x5=1。总体分布P{X=1}=p,P{X=0}=1-p,常写成P{X=x}合格品否则合格率为p,x=0或1。=px(1-p)1-x,分别以X1,X2…X5表示

7、,例某种炮弹的炮口速度,随机独立抽取5发,则X1,X2…X5相互独立且Xi~N(µ,δ2).x1=3,x2=4,x3=5,x4=6,x5=7。设为X,总体X服从正态分布N(µ,δ2),不含任何未知参数.统计量:样本X1,X2….Xn的函数样本方差样本均值分别以X1,X2…X5表示炮口速度,但µ,δ2未知,样本k阶矩样本k阶中心矩例总体X的期望,方差分别为X1,X2…Xn为来自总体X的样本,求第二节抽样分布设X1,X2…Xn是来自总体N(0,1)的样本,称统计量服从自由度为n的分布,记为分布的概率分布密度为1、分布分布具有以下性质:X~N(0,1),

8、若满足条件称为标准正态分布的上分位点.求标准正态分布的上分位点,=0.003,求2、t分布设X~N(0,1),Y~,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。