解析几何高考题汇编含答案

解析几何高考题汇编含答案

ID:41140484

大小:207.51 KB

页数:4页

时间:2019-08-17

解析几何高考题汇编含答案_第1页
解析几何高考题汇编含答案_第2页
解析几何高考题汇编含答案_第3页
解析几何高考题汇编含答案_第4页
资源描述:

《解析几何高考题汇编含答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、圆锥曲线一、选择题1、(2009全国卷Ⅱ文)双曲线的渐近线与圆相切,则r=          2、(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是   3、(2009江西卷文)设和为双曲线()的两个焦点,若,是正三角形的三个顶点,则双曲线的离心率为          4、(2009山东卷文)设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为          5、(2009全国卷Ⅱ文)已知直线与抛物线C:相交A、B两点,F

2、为C的焦点。若,则k=          6、(2009湖北卷理)已知双曲线的准线过椭圆的焦点,若直线与椭圆至多有一个交点,则k的取值范围为          7、(2009湖南卷文)过双曲线C:的一个焦点作圆的两条切线,切点分别为A,B,若(O是坐标原点),则双曲线线C的离心率为         8、(2009北京理)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是          A.直线上的所有点都是“点”B.直线上仅有有限个点是“点”C.直线上的所有点都不是“点”D.直线上有无穷

3、多个点(点不是所有的点)是“点”二、解答题9.(2009年广东卷文)(本小题满分14分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积(3)问是否存在圆包围椭圆G?请说明理由.10.(2009江苏卷)(本题满分10分)在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点的直线交抛物线C于D、E两点,ME=2DM

4、,记D和E两点间的距离为,求关于的表达式。1、【解析】本题考查双曲线性质及圆的切线知识,由圆心到渐近线的距离等于r,可求r=2、【解析】对于椭圆,因为,则3、【解析】由有,则,4、【解析】 抛物线的焦点F坐标为,则直线的方程为,它与轴的交点为A,所以△OAF的面积为,解得.所以抛物线方程为,5、【解析】本题考查抛物线的第二定义,由直线方程知直线过定点即抛物线焦点(2,0),由及第二定义知联立方程用根与系数关系可求k=.【法2】设抛物线的准线为直线恒过定点P.如图过分别作于,于,由,则,点B为AP的中点.连结,则,点的横坐标为

5、,故点的坐标为6、【解析】易得准线方程是所以即所以方程是联立可得由可解得7、【解析】,8、【解析】本题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能力.属于创新题型.本题采作数形结合法易于求解,如图,设,则,∵,∴消去n,整理得关于x的方程(1)∵恒成立,∴方程(1)恒有实数解,9解(1)设椭圆G的方程为:()半焦距为c;则,解得,所求椭圆G的方程为:.(2)点的坐标为(3)若,由可知点(6,0)在圆外,若,由可知点(-6,0)在圆外;不论K为何值圆都不能包围椭圆G.、10、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。