欢迎来到天天文库
浏览记录
ID:41123931
大小:1.15 MB
页数:16页
时间:2019-08-17
《三角函数与解三角形专题训练》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、三角求值与解三角形专项训练1三角公式运用【通俗原理】1.三角函数的定义:设,记,,则.2.基本公式:.3.诱导公式:4.两角和差公式:,,.5.二倍角公式:,,.6.辅助角公式:①,其中由及点所在象限确定.②,其中由及点所在象限确定.【典型例题】1.已知,证明:.162.若,,求的值.3.已知,,求的值.4.求的值.5.证明:.【跟踪练习】161.已知,求的值.2.若,求的值.三角求值与解三角形专项训练2.解三角形1.三角形边角关系:在中,的对边分别为,①;②若,则;③等边对等角,大边对大角.2.正弦定理:(是外接圆的半径).变形:,.3.余弦定理:.变形:,其他同理可得.4.三角形
2、面积公式:.5.与三角形有关的三角方程:①或;②.6.与三角形有关的不等式:①.7.解三角形的三种题型:①知三个条件(知三个角除外),求其他(角、边、面积、周长等);②知两个条件,求某个特定元素或范围;③知一边及其对角,求角、边、周长、面积的范围或最值.16【典型例题】1.在中,若,试判断的形状.2.在中,证明:.3.在中,,,,求角的大小.4.在中,,,求角的大小.5.在中,,求角A的大小.166.在中,,.(I)求面积的最大值;(II)求周长的取值范围.【跟踪练习】1.在中,,求角.162.在中,.(I)求的大小;(II)求的最大值.3.在中,,,.(I)求边上的中线的长;(II
3、)求的角平分线的长.16参考答案OyP(x,y)Q(y,x)x5.1三角公式【典型例题】1.证明:如图,在单位圆中,记,,有,则,而,∴.2.解法一:∵,,有,代入得,则,,∴.解法二:∵,,∴,又,有.3.解:由,,得,则,∴.4.解:∵16,,∴.5.证明:.【跟踪练习】1.解:∵,且,∴.2.解:由得,即,∴,即,解得.由得,即.由得,即,∴.165.3解三角形【典型例题】1.解:由及正弦定理得,即,又,有或,即或,∴是等腰三角形或直角三角形.2.证明:,由及正弦定理得,而函数在上单调递减,有,∴,∴.3.解:由正弦定理得,得.因为,所以,故或.当时,.当时,.∴角为或.4.解
4、:∵,∴由正弦定理有sinC=sinA.又C=2A,即sin2A=sinA,于是2sinAcosA=sinA,在△ABC中,sinA≠0,于是cosA=,∴A=.5.解:由条件结合正弦定理得,,从而,,∵,∴.6.解:(I)∵,由余弦定理得,∴,仅当时等号成立,∴的面积,16∴当时,面积的最大值为;(II)由(I)得,即,∴,则,即,仅当时等号成立.∴的周长,仅当时等号成立,而,故,∴周长的取值范围是.【跟踪练习】1.解:由已知以及正弦定理,得,即.,∴,又,所以.2.解:(I)由已知得:,,;(II)由(I)知:,故,所以,,.3.解:(I)由及余弦定理得,又,∴,则,即,而,由得
5、,即.16是边上的中线,则,∴,有,即边上的中线长为;(II)由(I)得,,又是的平分线,由得,∴,即,又,∴,即的角平分线.165.2三角函数的图象与性质【通俗原理】1.三个基本三角函数的图象与性质(1)奇偶性:偶函数,图象关于轴对称;(2)对称性:关于中心对称,关于轴对称;(,下同)(3)周期性:周期为;(4)单调性:在上递减,在上递增;(5)最值性:当时,,当时,;(6)有界性:当时,.(1)奇偶性:奇函数,图象关于原点对称;(2)对称性:关于中心对称,关于轴对称;(,下同)(3)周期性:周期为;(4)单调性:在上递增,在上递减;(5)最值性:当时,,当时,;(6)有界性:当时
6、,.(1)奇偶性:奇函数,图象关于原点对称;(2)对称性:关于中心对称,不是轴对称图形;(,下同)(3)周期性:周期为;(4)单调性:在上递增.(1)切线:曲线在处的切线为,曲线在处的切线也为;(2)不等式:当时,,当时,,当时,.162.函数图象平移与伸缩变换(1)左右平移:;同理有如下结果:(2)上下平移:,即;说明:①当时,向右平移个单位得,当时,向左平移个单位得;②当时,向上平移个单位得,即,当时,向下平移个单位得,即.(3)横向伸缩:;(4)纵向伸缩:,即.说明:当时,表示伸长,当时,表示缩短;当时,表示伸长,当时,表示缩短.【典型例题】1.已知函数.(1)求的对称轴及对称
7、中心;(2)求的单调递增区间及在上的单调递增区间;(3)求在上的最大值与最小值,并求出相应的的值.163.把函数的图象经过怎样的平移与伸缩变换可得到函数的图象?【跟踪练习】1.函数的对称轴是.2.已知,,函数,把的图象向右平移个单位得到一个偶函数的图象,把的图象向左平移个单位得到一个奇函数的图象,当取得最小值时,求在上的单调递减区间.3.若把函数的图象向左平移1个单位,再把横坐标缩短为原来的倍(纵坐标不变)得到函数的图象,求函数的解析式.5.2三角函数的图
此文档下载收益归作者所有