三角函数与解三角形专题讲座

三角函数与解三角形专题讲座

ID:41764586

大小:136.31 KB

页数:14页

时间:2019-09-01

三角函数与解三角形专题讲座_第1页
三角函数与解三角形专题讲座_第2页
三角函数与解三角形专题讲座_第3页
三角函数与解三角形专题讲座_第4页
三角函数与解三角形专题讲座_第5页
资源描述:

《三角函数与解三角形专题讲座》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、三角函数与解三角形一、角的有关概念1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕其竝从一个位置旋转到另一个位置所成的图形.7」按旋转方向不同分为正角、负角和零角.(2)分类[按终边位置不同分为象限角和轴线角.(3)终边相同的角:所冇与角a终边相同的角,连同角u在内,可构成_个集合S={〃

2、〃=a+&・360。,圧Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.⑵公式角a的弧度数公式14—厂(弧长用/表小)角度与弧度的换算①『-而说;②1rad—(=)弧长公式弧长l=ar扇形面积公式119S=K=^

3、a

4、广3.象限角与轴

5、线角的表示:(1)象限角的表示:①第一象限角的表示:②第二象限角的表示:③第三象限角的表示:④第四象限角的表示:(2)象限角的表示:①终边落x轴非负半轴上的角的表示:②终边落x轴非正半轴上的角的表示:③终边落x轴上的角的表示:;④终边落y轴非负半轴上的角的表示:⑤终边落y轴非正半轴上的角的表示:⑥终边落y轴上的角的表示:;⑦终边落在坐标轴上的角的表示:o二、任意角的三角函数注:1.三角函数的定义屮,当角g终边上的点P(兀,y)是单位圆上的点时,有sin«=y,cosa=x>(ana=¥,但若角a终边上的点P(x,y)不是单位圆上的点时,图屮圆的半径为/-0P=Jx2+y2,则sina=c

6、osa=~,ttana=!tX2.已知三角函数值的符号确定角的终边位置时,不要遗漏终边在坐标轴上的情况.3.在解简单的三角方程或三角不等式时,单位圆中的三角函数线是一个很好的工具.2.三角公式(1).同角三角函数的基本关系①平方关系:sin2a+cos2a=1;②商数关系:tanct=2^・注:1・在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.2•注意求值与化简后的结果一般要尽可能有理化、整式化.3.弦切互化法:主要利用公式tan成正、余弦.4.和积转换法:利用(sin&土cos&)2=l±2sin0cos0的关系进行变形、转化.(2).三角函数的诱导公式①把ct+2刼伙W

7、Z)、±兀土a、一a的三角函数化成a的三角函数时,遵循的原则是“函数名不变,符号看象限”;①把土-±a、±—±a的三角函数化成&的三角函数时,遵循的原则是“函数名改变,符22号看象限”;Ljr②一般的把——±Q伙WZ)的三角函数化成G的三角函数时,遵循的原则是“奇变偶不变,符2号看象限”(3〉•两角和与差的正弦、余弦和正切公式sin(么切)=sinacos/^土costzsin";cos(aT0)=cosacosB±sinasin/?;tana土tan"tanW)=1Ttanatan/?•(4)・二倍角的正弦、余弦、正切公式sin2a=2sinacosa•cos2a=cos2a—sin2a

8、=2cos2a—1=1—2sin2a.、2tanalan2(z="~•1—tana<5).有关公式的逆用、变形①tana+tanp=tan(a±/?)(ITtan/?为常数),可以化为a1+b2sin(a+中住m或弘)=寸庄匚产・cos(a—卩)(其中tan(p注:三角恒等变换的常用方法与技巧1.变角:通过对角的拆分尽可能化为同角、特殊角、己

9、知角的和与差,角的变换是三角恒等变换的核心,如〃=(a+0)—弘20=@+0)—(a—0),a=2xf,^=(^^)-

10、等,这种手法通常叫“配凑”.2.变名:通过变换尽可能减少函数种类、降低次数、减少项数,其手法通常有“切化弦”、“升幕与降幕”等.3.变式:根据式子的结构特征进行变形,使其更简化、更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”(如1根据需要可换成tan兰.sin2674-cos2tz,丄根427171据需要可换成Si陀或C。込等)、“逆用或变形用公式”、“通分与约分”、“分解与组合”、"配方与平方”等.3.正弦、余弦、正切函数的图象与性质函数y=sinxy=co

11、sxy=tanx图彖2x4牡定义域RRgz}值域[T,1][T,1]R周期性2兀2jt兀奇偶性奇函数偶函数奇函数递增区间兀712kn~2^2刼+㊁伙WZ)[2刼一兀,2换]伙ez)仏_务刼+功伙WZ)递减区间2紅+彳,2刼+¥(MZ)[2fac,2ht+兀]伙丘Z)无对称中心伽,0)(胆Z)仏+号,0)伙ez)俘,0)伙WZ)对称轴兀=换+号伙WZ)x=kn伙GZ)无最值TT当x=2k7t+—ykwZ时2y=sinx取最

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。