SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks

SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks

ID:40725591

大小:3.15 MB

页数:7页

时间:2019-08-06

SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks_第1页
SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks_第2页
SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks_第3页
SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks_第4页
SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks_第5页
资源描述:

《SemanticFusion Dense 3D Semantic Mapping with Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SemanticFusion:Dense3DSemanticMappingwithConvolutionalNeuralNetworksJohnMcCormac,AnkurHanda,AndrewDavison,andStefanLeuteneggerDysonRoboticsLab,ImperialCollegeLondonAbstract—Evermorerobust,accurateanddetailedmappingusingvisualsensinghasproventobeanenablingfactorformobilerobotsacros

2、sawidevarietyofapplications.Forthenextlevelofrobotintelligenceandintuitiveuserinteraction,mapsneedextendbeyondgeometryandappearence—theyneedtocontainsemantics.WeaddressthischallengebycombiningConvolutionalNeuralNetworks(CNNs)andastateoftheartdenseSimultaneousLocalisationandMapping

3、(SLAM)system,ElasticFusion,whichprovideslong-termdensecorrespondencebetweenframesofindoorRGB-Dvideoevenduringloopyscanningtrajectories.ThesecorrespondencesallowtheCNN’sFig.1:Theoutputofoursystem:Ontheleft,adensesurfelsemanticpredictionsfrommultipleviewpointstobeproba-basedreconstr

4、uctionfromavideosequenceintheNYUv2bilisticallyfusedintoamap.Thisnotonlyproducesausefultestset.Ontherightthesamemap,semanticallyannotatedsemantic3Dmap,butwealsoshowontheNYUv2datasetthatfusingmultiplepredictionsleadstoanimprovementeveninthewiththeclassesgiveninthelegendbelow.2Dseman

5、ticlabellingoverbaselinesingleframepredictions.Wealsoshowthatforasmallerreconstructiondatasetwithlargervariationinpredictionviewpoint,theimprovementoversingleframesegmentationincreases.Oursystemisefficientenoughsurfelsremainpersistentlyassociatedwithreal-worldentitiestoallowreal-ti

6、meinteractiveuseatframe-ratesof25Hz.andthisenableslong-termfusionofper-framesemanticpredictionsoverwidechangesinviewpoint.I.INTRODUCTIONThegeometryofthemapitselfalsoprovidesusefulTheinclusionofrichsemanticinformationwithinadenseinformationwhichcanbeusedtoefficientlyregularisethema

7、penablesamuchgreaterrangeoffunctionalitythanfinalpredictions.Ourpipelineisdesignedtoworkonline,andgeometryalone.Forinstance,indomesticrobotics,asimplealthoughwehavenotfocusedonperformance,theefficiencyfetchingtaskrequiresknowledgeofbothwhatsomethingis,ofeachcomponentleadstoareal-tim

8、ecapable(25Hz)aswellaswhereitisl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。