Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving

Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving

ID:40715709

大小:1.51 MB

页数:9页

时间:2019-08-06

Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving_第1页
Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving_第2页
Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving_第3页
Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving_第4页
Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving_第5页
资源描述:

《Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FastRecurrentFullyConvolutionalNetworksforDirectPerceptioninAutonomousDrivingEric(Yiqi)HouSaschaHornauerKarlZipserBerkeleyDeepDriveUniversityofCalifornia,BerkeleyBerkeleyDeepDrive109McLaughlinHall(ICSI)1947CenterSt109McLaughlinHallBerkeley,CA94720-1720Berkeley,CA94704Berkeley,CA94704

2、eric.hou@berkeley.edusaschaho@icsi.berkeley.edukarlzipser@berkeley.eduAbstractDeepconvolutionalneuralnetworks(CNNs)havebeenshowntoperformextremelywellatavarietyoftasksin-cludingsubtasksofautonomousdrivingsuchasimageseg-mentationandobjectclassification.However,networksde-signedforthese

3、taskstypicallyrequirevastquantitiesoftrainingdataandlongtrainingperiodstoconverge.Weinvestigatethedesignrationalebehindend-to-enddrivingnetworkdesignsbyproposingandcomparingthreesmallandcomputationallyinexpensivedeepend-to-endneuralnetworkmodelsthatgeneratedrivingcontrolsignalsdi-rec

4、tlyfrominputimages.Incontrasttopriorworkthatseg-Figure1.F-RFCNArchitecturementstheautonomousdrivingtask,ourmodelstakeonanovelapproachtotheautonomousdrivingproblembyuti-lizingdeepandthinFullyConvolutionalNets(FCNs)withandrequirehighamountsofcomputationalpower.3Dob-recurrentneuralnetsa

5、ndlowparametercountstotacklejectdetection[5],forinstance,takes0.36sforinferenceacomplexend-to-endregressiontaskpredictingbothsteer-aloneonaTitanX,orlessthan3inferencespersecond,ingandaccelerationcommands.Inaddition,weincludeandreliesonamodifiedbutstillparameter-heavyVGG-layersoptimize

6、dforclassificationtoallowthenetworksto16.Whileextremelyaccurate,withmodern-dayprocessorimplicitlylearnimagesemantics.Weshowthattheresult-limitations,suchmodelsaretooheavytoreachbetterthaningnetworksuse3xfewerparametersthanthemostre-humanreactiontimesof100ms(10FPS)comparedtotra-centcom

7、parableend-to-enddrivingnetwork[2]and500xditionalsystemslikeLIDAR(24FPS)[1]andalgorithmsfewerparametersthantheAlexNetvariationsandconvergebasedontraditionalmachinelearning(100FPS)[20]thatarXiv:1711.06459v2[cs.CV]20Nov2017bothfasterandtolowerlosseswhilemaintainingrobust-achievehigherF

8、PSattheexpen

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。