资源描述:
《Shape Inpainting Using 3D Generative Adversarial Network and Recurrent Convolutional Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ShapeInpaintingusing3DGenerativeAdversarialNetworkandRecurrentConvolutionalNetworksWeiyueWang1QianguiHuang1SuyaYou2ChaoYang1UlrichNeumann11UniversityofSouthernCalifornia2USArmyResearchLaboratoryLosAngeles,CaliforniaPlayaVista,California{weiyuewa,qianguih,chaoy,uneumann}@usc.edusu
2、ya.you.civ@mail.milAbstractgenerationandimageinpainting.Generatingandinpaint-ing3DmodelsisanewandmorechallengingproblemdueRecentadvancesinconvolutionalneuralnetworkshavetoitshigherdimensionality.Theavailabilityoflarge3Dshownpromisingresultsin3Dshapecompletion.ButduetoCADdatasets[
3、5,27]andCNNsforvoxel(spatialoccu-GPUmemorylimitations,thesemethodscanonlyproducepancy)models[26,21,8]enabledprogressinlearning3Dlow-resolutionoutputs.Toinpaint3Dmodelswithseman-representation,shapegenerationandcompletion.Despiteticplausibilityandcontextualdetails,weintroduceahy-t
4、heirencouragingresults,artifactsstillpersistsintheirgen-bridframeworkthatcombinesa3DEncoder-DecoderGen-eratedshapes.Moreover,theirmethodsareallbasedon3DerativeAdversarialNetwork(3D-ED-GAN)andaLong-CNN,whichimpedestheirabilitytohandlehigherresolu-termRecurrentConvolutionalNetwork(
5、LRCN).The3D-tiondataduetolimitedGPUmemory.ED-GANisa3DconvolutionalneuralnetworktrainedwithInthispaper,anewsystemfor3Dobjectinpaintingagenerativeadversarialparadigmtofillmissing3Ddataisintroducedtoovercometheaforementionedlimitations.inlow-resolution.LRCNadoptsarecurrentneuralnet-G
6、ivena3Dobjectwithholes,weaimto(1)fillthemissingworkarchitecturetominimizeGPUmemoryusageandin-ordamagedportionsandreconstructacomplete3Dstruc-corporatesanEncoder-DecoderpairintoaLongShort-ture,and(2)furtherpredicthigh-resolutionshapeswithtermMemoryNetwork.Byhandlingthe3Dmodelasase-
7、fine-graineddetails.Weproposeahybridnetworkstructurequenceof2Dslices,LRCNtransformsacoarse3Dshapebasedon3DCNNthatleveragesthegeneralizationpowerintoamorecompleteandhigherresolutionvolume.WhileofaGenerativeAdversarialmodelandthememoryeffi-3D-ED-GANcapturesglobalcontextualstructureof
8、the3DciencyofRecurrentNeuralNetwork(RNN)