approximation of non-autonomous dynamic systems by continuous time recurrent neural networks

approximation of non-autonomous dynamic systems by continuous time recurrent neural networks

ID:14848364

大小:390.78 KB

页数:6页

时间:2018-07-30

approximation of non-autonomous dynamic systems by continuous time recurrent neural networks_第1页
approximation of non-autonomous dynamic systems by continuous time recurrent neural networks_第2页
approximation of non-autonomous dynamic systems by continuous time recurrent neural networks_第3页
approximation of non-autonomous dynamic systems by continuous time recurrent neural networks_第4页
approximation of non-autonomous dynamic systems by continuous time recurrent neural networks_第5页
资源描述:

《approximation of non-autonomous dynamic systems by continuous time recurrent neural networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Approximationofnon-autonomousDynamicSystemsbyContinuousTimeRecurrentNeuralNetworksC.KAMBHAMPATI,F.GARCES*,K.WARWICKDepartmentofCybernetics,UniversityofReadingWhiteknights,POBox225,ReadingRG66AYEngland,UKAbstractThisworkprovidesaframeworkfortheapproxima

2、tionofadynamicsystemoftheformX=f(x)+g(x)ubyDynamicRecurrentNeuralNetwork(DRNNs).Thisextendspreviousworkinwhichapproximaterealisationofautonomousdynamicsystemswasproven.Givencertainconditions,thefirstpoutputneuralunitsofadynamicn-dimensionalneuralmodela

3、pproximateatadesiredproximityap-dimensionaldynamicsystemwithn>p.Theneuralarchitecturestudiedisthensuccessfullyimplementedinanonlinearmultivariablesystemidentificationstudycase.1.IntroductionIdentificationofdynamicsystemsisoftenanimportantprerequisitefo

4、rasuccessfulanalysisandcontrollerdesign.Duetothenonlinearnatureofmostoftheprocessesencounteredinengineeringapplications,therehasbeenextensiveresearchcoveringthefieldofnonlinearsystemidentification[Billings,19801.Developingaprecisemodelforlinearisationi

5、spossiblehowever,thiscanbetimeconsumingandsuchamodelmightevenbeunsuitableforcontrolpurposes.Itisherethatneuralnetworkscomeupasafeasiblesolution.Theuniversalapproximationpropertiesofstaticneuralnetworks[Funahashi,19891makethemausefultoolforthemodellingo

6、fnonlinearsystems.Thisproblemofnonlinearmodellingusingneuralnetworkshasbeenextensivelyproposed[NarendraandParthasarathy,19901.[ChenandBillings,19921,[Choietal.,19961and[TanandVandewalle,19951areexamplesoflaterapproachesusingmultilayerperceptronsandradi

7、albasisfunctions.Addingintemaldynamicstoneuralnetworksfornonlinearsystemmodellingseemedtobeanecessaryenhancementandseveraltechniquesareproposed:[AdwankarandBanavar,19971,[NarendraandParthasarathy,19901and[ZhangandFadali,19961.Theyshowinsimulationstheno

8、nlinearidentificationpropertiesofdynamicneuralnetworksbutis[FunahashiandNakamura,19931and[KimuraandNakano,19981whoprovethatdynamicneuralnetworkscanrealisefinitetrajectoriesofn-dimensionalautonomousdynamicsystemsoftheform.i=f(x).Itwaslat

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。