欢迎来到天天文库
浏览记录
ID:14848186
大小:155.81 KB
页数:4页
时间:2018-07-30
《modeling of continuous time dynamical systems with input by recurrent neural networks 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、IEEETRANSACTIONSONCIRCUITSANDSYSTEMS—I:FUNDAMENTALTHEORYANDAPPLICATIONS,VOL.47,NO.4,APRIL2000575ModelingofContinuousTimeDynamicalSystemswithtemscanbeapproximatelyrealizedbyRNN.ThispaperisorganizedInputbyRecurrentNeuralNetworksasfollows.Themodelofacontinuous-timeRNNisgiveninSectionII.S
2、ectionIIIpresentstheapproximationrealizationtheorem.SectionTommyW.S.ChowandXiao-DongLiIVpresentsthepreliminariesofourproof.SectionVgivestheproofofthetheorem.SectionVIdescribestheextensionofthetheorem.Fi-nally,SectionVIIconcludesthepaper.Abstract—Thispaperprovesthatanyfinitetimetraject
3、oryofagiven-dimensionaldynamicalcontinuoussystemwithinputcanbeapproxi-matedbytheinternalstateoftheoutputunitsofacontinuous-timerecur-II.DYNAMICALRECURRENTNEURALNETWORKSrentneuralnetwork(RNN).TheproofisbasedontheideaofembeddingAdynamicalrecurrentnetworks(RNN)isacomplexnonlineardy-the-d
4、imensionaldynamicalsystemintoahigherdimensionalone.Asaresult,weareabletoconfirmthatanycontinuousdynamicalsystemcanbenamicsystemdescribedbyasetofnonlineardifferentialordifferencemodeledbyanRNN.equationswithextensiveconnectionweights.Inthispaper,onlycon-tinuous-timeversionofananalogRNNw
5、ithtime-varyinginputsisdis-IndexTerms—Approximation,continuous-timerecurrentneuralnetworks,dynamicalsystem.cussed.AGeneralexpressionofthistypeofRNNwithLneuralunitsisgivenbythefollowingcontinuousnonlinearsystem:I.INTRODUCTIONz_=0z+f(W1;z;W2;u)(1)Feedforwardneuralnetworks(FNN’s)andrecu
6、rrentneuralnet-Lmworks(RNN’s)arethetwomajorclassesofneuralnetworks(NN’s)wherez2Randu2Raretheneuralstateandtheinputvec-L2LL2mwidelyused.Intheareaofdynamicalsystemsithasbeenshowntors,respectively,andW12R;W22RaretheconnectionthatFNNiscapableofapproximatingnotonlyacontinuousfunctionweight
7、matricesassociatedwiththeneuralstateandtheinputvectors,butalsoitsderivativestoanarbitrarydegreeofaccuracy.Thereisrespectively.isafixedconstantcontrollingthedecayingstateandisLmLalsoincreasinginterestinstudyingtheapproximationcapabilityofchosenas0<<1andf:R2R!Risanappropriatelydynamica
8、lRNN,
此文档下载收益归作者所有