modeling of continuous time dynamical systems with input by recurrent neural networks

modeling of continuous time dynamical systems with input by recurrent neural networks

ID:14848186

大小:155.81 KB

页数:4页

时间:2018-07-30

modeling of continuous time dynamical systems with input by recurrent neural networks _第1页
modeling of continuous time dynamical systems with input by recurrent neural networks _第2页
modeling of continuous time dynamical systems with input by recurrent neural networks _第3页
modeling of continuous time dynamical systems with input by recurrent neural networks _第4页
资源描述:

《modeling of continuous time dynamical systems with input by recurrent neural networks 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONCIRCUITSANDSYSTEMS—I:FUNDAMENTALTHEORYANDAPPLICATIONS,VOL.47,NO.4,APRIL2000575ModelingofContinuousTimeDynamicalSystemswithtemscanbeapproximatelyrealizedbyRNN.ThispaperisorganizedInputbyRecurrentNeuralNetworksasfollows.Themodelofacontinuous-timeRNNisgiveninSectionII.S

2、ectionIIIpresentstheapproximationrealizationtheorem.SectionTommyW.S.ChowandXiao-DongLiIVpresentsthepreliminariesofourproof.SectionVgivestheproofofthetheorem.SectionVIdescribestheextensionofthetheorem.Fi-nally,SectionVIIconcludesthepaper.Abstract—Thispaperprovesthatanyfinitetimetraject

3、oryofagiven-dimensionaldynamicalcontinuoussystemwithinputcanbeapproxi-matedbytheinternalstateoftheoutputunitsofacontinuous-timerecur-II.DYNAMICALRECURRENTNEURALNETWORKSrentneuralnetwork(RNN).TheproofisbasedontheideaofembeddingAdynamicalrecurrentnetworks(RNN)isacomplexnonlineardy-the-d

4、imensionaldynamicalsystemintoahigherdimensionalone.Asaresult,weareabletoconfirmthatanycontinuousdynamicalsystemcanbenamicsystemdescribedbyasetofnonlineardifferentialordifferencemodeledbyanRNN.equationswithextensiveconnectionweights.Inthispaper,onlycon-tinuous-timeversionofananalogRNNw

5、ithtime-varyinginputsisdis-IndexTerms—Approximation,continuous-timerecurrentneuralnetworks,dynamicalsystem.cussed.AGeneralexpressionofthistypeofRNNwithLneuralunitsisgivenbythefollowingcontinuousnonlinearsystem:I.INTRODUCTIONz_=0 z+f(W1;z;W2;u)(1)Feedforwardneuralnetworks(FNN’s)andrecu

6、rrentneuralnet-Lmworks(RNN’s)arethetwomajorclassesofneuralnetworks(NN’s)wherez2Randu2Raretheneuralstateandtheinputvec-L2LL2mwidelyused.Intheareaofdynamicalsystemsithasbeenshowntors,respectively,andW12R;W22RaretheconnectionthatFNNiscapableofapproximatingnotonlyacontinuousfunctionweight

7、matricesassociatedwiththeneuralstateandtheinputvectors,butalsoitsderivativestoanarbitrarydegreeofaccuracy.Thereisrespectively.isafixedconstantcontrollingthedecayingstateandisLmLalsoincreasinginterestinstudyingtheapproximationcapabilityofchosenas0< <1andf:R2R!Risanappropriatelydynamica

8、lRNN,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。