on the identification and control of dynamical systems using neural networks

on the identification and control of dynamical systems using neural networks

ID:14852569

大小:130.19 KB

页数:3页

时间:2018-07-30

on the identification and control of dynamical systems using neural networks _第1页
on the identification and control of dynamical systems using neural networks _第2页
on the identification and control of dynamical systems using neural networks _第3页
资源描述:

《on the identification and control of dynamical systems using neural networks 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、452IEEETRANSACTIONSONNEURALNETWORKS,VOL.8,NO.2,MARCH1997OntheªIdentificationandControlofCommentsonªStochasticChoiceofBasisFunctionsDynamicalSystemsUsingNeuralNetworksºinAdaptiveFunctionApproximationandtheFunctional-LinkNetºErnestoRios-PatronandRichardD.BraatzJin-YanLiandTommyW.S.ChowA

2、bstractÐItisnotedthat[1,p.15,Example2]hasathirdequilibriumAbstractÐThispaperincludessomecommentsandamendmentsofthestatecorrespondingtothepoint(0.5,0.5).above-mentionedpaper.Subsequently,Theorem1intheabove-mentionedpaperhasbeenrevised.Thesignificantchangeoftheoriginaltheoremisthespaceo

3、fthethresholdsinthehiddenlayer.TherevisedtheoremsaysI.REMARKSthatthethresholdsofhiddenunits,b0,shouldbe0w01y00u0,wherew0=w^0;w^0=(^w01;111;w^0d),y0=(y01;111;y0d),andu0beIn[1],NarendraandParthasarathyperformanadmirablestudyindependentanduniformlydistributedinVd=[0;]2[0;]d01,oftheappli

4、cationofneuralnetworksforidentificationandcontrol.Id,and[02d;2d],respectively.Weagreewiththestatementoftheauthorsof[1,p.15],thatfornonlinearprocesses,ªSomepriorinformationconcerningtheI.INTRODUCTIONinput±outputbehavioroftheplantisneededbeforeidentificationcan1Theabove-mentionedpaperhas

5、introducedtherandomvectorbeundertaken.Thisincludesthenumberofequilibriumstatesoftheversionofthefunctional-link(RVFL)net.IgelnikandPaoshowunforcedsystemandtheirstabilityproperties....ºTheauthorsthenthefunctionapproximationcapabilityofRVFLbyastochasticstatethattheequilibriumstatesofthe

6、unforcedsystemapproachbasedonanlimit-integralrepresentationofthefunctiontobeapproximatedwithsubsequentevaluationoftheintegralbyyp(k)yp(k01)(yp(k)+2:5)theMonteCarlomethod.Thisstochasticapproachisdemonstratedyp(k+1)=(1)1+yp2(k)+yp2(k01)tobeanefficientapproximationmethodofmultivariatefun

7、ctionsaccordingtoitstheoreticaljustificationandsimulationresults.ThemostdistinctivecharacteristicofRVFListhatpartsofparametersofare(yp(k);yp(k01))=(0;0)and(2,2).RVFL,i.e.,theweightsandthresholdsofhiddenlayerareselectedWewouldliketonotethatthissystemhasathirdequilibriumstate,randomly,i

8、ndependently

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。