[CVPR2015]Fully Convolutional Networks for Semantic Segmentation

[CVPR2015]Fully Convolutional Networks for Semantic Segmentation

ID:40702268

大小:2.72 MB

页数:10页

时间:2019-08-06

[CVPR2015]Fully Convolutional Networks for Semantic Segmentation_第1页
[CVPR2015]Fully Convolutional Networks for Semantic Segmentation_第2页
[CVPR2015]Fully Convolutional Networks for Semantic Segmentation_第3页
[CVPR2015]Fully Convolutional Networks for Semantic Segmentation_第4页
[CVPR2015]Fully Convolutional Networks for Semantic Segmentation_第5页
资源描述:

《[CVPR2015]Fully Convolutional Networks for Semantic Segmentation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FullyConvolutionalNetworksforSemanticSegmentationJonathanLongEvanShelhamerTrevorDarrellUCBerkeleyfjonlong,shelhamer,trevorg@cs.berkeley.eduAbstractforward/inferencebackward/learningConvolutionalnetworksarepowerfulvisualmodelsthatsegmentationg.t.pixelwisepredictionyieldhierarchiesoffeatur

2、es.Weshowthatconvolu-tionalnetworksbythemselves,trainedend-to-end,pixels-21to-pixels,exceedthestate-of-the-artinsemanticsegmen-40964096384384256tation.Ourkeyinsightistobuild“fullyconvolutional”256networksthattakeinputofarbitrarysizeandproduce96correspondingly-sizedoutputwithefficientinferen

3、ceandlearning.Wedefineanddetailthespaceoffullyconvolu-21tionalnetworks,explaintheirapplicationtospatiallydenseFigure1.Fullyconvolutionalnetworkscanefficientlylearntomakedensepredictionsforper-pixeltaskslikesemanticsegmen-predictiontasks,anddrawconnectionstopriormodels.Wetation.adaptcontempor

4、aryclassificationnetworks(AlexNet[19],theVGGnet[31],andGoogLeNet[32])intofullyconvolu-tionalnetworksandtransfertheirlearnedrepresentationsWeshowthatafullyconvolutionalnetwork(FCN),byfine-tuning[4]tothesegmentationtask.Wethende-trainedend-to-end,pixels-to-pixelsonsemanticsegmen-fineanovelarchi

5、tecturethatcombinessemanticinforma-tationexceedsthestate-of-the-artwithoutfurthermachin-tionfromadeep,coarselayerwithappearanceinformationery.Toourknowledge,thisisthefirstworktotrainFCNsfromashallow,finelayertoproduceaccurateanddetailedend-to-end(1)forpixelwisepredictionand(2)fromsuper-segme

6、ntations.Ourfullyconvolutionalnetworkachievesvisedpre-training.Fullyconvolutionalversionsofexistingstate-of-the-artsegmentationofPASCALVOC(20%rela-networkspredictdenseoutputsfromarbitrary-sizedinputs.tiveimprovementto62.2%meanIUon2012),NYUDv2,Bothlearningandinferenceareperformedwhole-image

7、-at-andSIFTFlow,whileinferencetakeslessthanonefifthofaa-timebydensefeedforwardcomputationandbackpropa-secondforatypicalimage.gation.In-networkupsamplinglayersenablepixelwisepre-dictionandlearninginnetswithsubsampledpooling.Thismethodisefficient,bothasymptoticall

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。