Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks

Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks

ID:40723142

大小:1.92 MB

页数:10页

时间:2019-08-06

Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks_第1页
Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks_第2页
Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks_第3页
Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks_第4页
Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks_第5页
资源描述:

《Pixel-Level Matching for Video Object Segmentation Using Convolutional Neural Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Pixel-LevelMatchingforVideoObjectSegmentationusingConvolutionalNeuralNetworksJaeShinYoon†‡FrancoisRameau‡JunsikKim‡SeokjuLee‡SeunghakShin‡InSoKweon‡†UMN,Minneapolis,MN‡KAIST,SouthKoreayoon0074@umn.edu,{frameau,Jskim2,sjlee,shshin}@rcv.kaist.ac.kr,iskweon@kaist.ac

2、.krAbstractSearchWeproposeanovelvideoobjectsegmentationalgorithmPixel-levelSimilaritybasedonpixel-levelmatchingusingConvolutionalNeuralFramet(Target)ObjectnessNetworks(CNN).Ournetworkaimstodistinguishthetar-getareafromthebackgroundonthebasisofthepixel-levelsimila

3、ritybetweentwoobjectunits.TheproposednetworkrepresentsatargetobjectusingfeaturesfromdifferentdepthQuerylayersinordertotakeadvantageofboththespatialdetailsResultandthecategory-levelsemanticinformation.Furthermore,Frame1(Reference)weproposeafeaturecompressiontechni

4、quethatdrasticallyreducesthememoryrequirementswhilemaintainingtheca-Figure1.Exampleofaresultoftheproposedpixel-levelmatchingpabilityoffeaturerepresentation.Two-stagetraining(pre-network.Here,acompletelysegmentedreferenceframeisfixedtrainingandfine-tuning)allowsourn

5、etworktohandleanytothequeryandasampletargetframeisfedtothesearchinput.targetobjectregardlessofitscategory(eveniftheobject’sEachcoloredboxisassociatedwiththesamecolorinFig.2.typedoesnotbelongtothepre-trainingdata)orofvaria-tionsinitsappearancethroughavideosequence

6、.Exper-Forinstance,fullyconnectedgraphshavebeenproposedinimentsonlargedatasetsdemonstratetheeffectivenessof[22]toconstructalongrangespatio-temporalgraphstruc-ourmodel-againstrelatedmethods-intermsofaccuracy,turerobusttochallengingsituationssuchasocclusion.Inspeed

7、,andstability.Finally,weintroducethetransferabil-anotherstudy[9],thehigherpotentialterminasupervoxelityofournetworktodifferentdomains,suchastheinfraredclusterunitwasusedtoenforcethesteadinessofagraphdatadomain.structure.Morerecently,non-localgraphconnectionsweree

8、ffectivelyapproximatedinthebilateralspace[17],which1.Introduction&RelatedWorksdrasticallyimprovedtheaccuracyofsegmentation.How-Videoobjectsegmentationreferstot

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。