Convolutional Networks for Fast, Energy-Efficient

Convolutional Networks for Fast, Energy-Efficient

ID:40711968

大小:2.51 MB

页数:7页

时间:2019-08-06

Convolutional Networks for Fast, Energy-Efficient_第1页
Convolutional Networks for Fast, Energy-Efficient_第2页
Convolutional Networks for Fast, Energy-Efficient_第3页
Convolutional Networks for Fast, Energy-Efficient_第4页
Convolutional Networks for Fast, Energy-Efficient_第5页
资源描述:

《Convolutional Networks for Fast, Energy-Efficient》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ConvolutionalNetworksforFast,Energy-EcientNeuromorphicComputingStevenK.Esser,PaulA.Merolla,JohnV.Arthur,AndrewS.Cassidy,RathinakumarAppuswamy,AlexanderAndreopoulos,DavidJ.Berg,Je reyL.McKinstry,TimothyMelano,DavisR.Barch,CarmelodiNolfo,Pallab

2、Datta,ArnonAmir,BrianTaba,MyronD.Flickner,andDharmendraS.ModhaIBMResearch{AlmadenAbstractmentalchangestonetworkstate,bothformallyrequiredforDeepnetworksarenowabletoachievehuman-levelperformanceonbackpropagation-basedgradientlearning.Incomparison,neu-ab

3、roadspectrumofrecognitiontasks.Independently,neuromorphicromorphicdesignsuse1-bitspikestoprovideevent-basedcom-computinghasnowdemonstratedunprecedentedenergy-eciencyputationandcommunication(consumingenergyonlywhenthroughanewchiparchitecturebasedonspikingn

4、eurons,lowpre-necessary)anduselow-precisionsynapsestoco-locatememorycisionsynapses,andascalablecommunicationnetwork.Here,wewithcomputation(keepingdatamovementlocalandavoidingdemonstratethatneuromorphiccomputing,despiteitsnovelarchi-o -chipmemorybottlenecks

5、).Here,wedemonstratethatbytecturalprimitives,canimplementdeepconvolutionnetworksthatintroducingtwoconstraintsintothelearningrule{binary-i)approachstate-of-the-artclassi cationaccuracyacross8stan-darddatasets,encompassingvisionandspeech,ii)performinferencev

6、aluedneuronswithapproximatederivativesandtrinary-whilepreservingthehardware'sunderlyingenergy-eciencyandhighvalued(f1;0;1g)synapses{itispossibletoadaptbackprop-throughput,runningontheaforementioneddatasetsatbetween1200agationtocreatenetworksdirectlyimple

7、mentableusingen-and2600framespersecondandusingbetween25and275mW(ef-ergyecientneuromorphicdynamics.Thisdrawsinspirationfectively>6000frames/sec/W)andiii)canbespeci edandfromthespikingneuronsandlow-precisionsynapsesofthetrainedusingbackpropagationwiththesam

8、eease-of-useascontem-brain[10],andbuildsuponworkshowingthatdeeplearningporarydeeplearning.Forthe rsttime,thealgorithmicpowerofcancreatenetworkswithconstrainedconnectivity[11],low-deeplearningcanbemergedwithth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。