[CVPR 2012] Contextual Boost for Pedestrian Detection

[CVPR 2012] Contextual Boost for Pedestrian Detection

ID:40702239

大小:473.82 KB

页数:8页

时间:2019-08-06

[CVPR 2012] Contextual Boost for Pedestrian Detection _第1页
[CVPR 2012] Contextual Boost for Pedestrian Detection _第2页
[CVPR 2012] Contextual Boost for Pedestrian Detection _第3页
[CVPR 2012] Contextual Boost for Pedestrian Detection _第4页
[CVPR 2012] Contextual Boost for Pedestrian Detection _第5页
资源描述:

《[CVPR 2012] Contextual Boost for Pedestrian Detection 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ContextualBoostforPedestrianDetectionYuanyuanDingandJingXiaoEpsonResearchandDevelopment,Inc.214DevconDrive,SanJose,CA95112{yding,xiaoj}@erd.epson.comAbstract[6,17,28,10,45,44,31,36,18,1].Todeterminewhetheralocalwindowboundingahumanfigure,bothgenera-Pedestriandetectionfromima

2、gesisanimportantandyettiveanddiscriminativeapproacheshavebeendevelopedchallengingtask.Theconventionalmethodsusuallyidentify[23].Thegenerativeapproachesinfertheposteriorprob-humanfiguresusingimagefeaturesinsidethelocalregions.abilityforpedestrianclassusingdiscrete[22]orcontin

3、uousInthispaperwepresentthat,besidesthelocalfeatures,[5,13,49]shapemodels,orcombiningshapeandtexturecontextcuesintheneighborhoodprovideimportantcon-models[26,14].Thediscriminativeapproachesextractim-straintsthatarenotyetwellutilized.Weproposeaframe-agefeaturesinthelocalwind

4、owandconstructclassifiersworktoincorporatethecontextconstraintsfordetection.fordetection.ForthispurposevariousfeatureshavebeenFirst,wecombinethelocalwindowwithneighborhoodwin-proposed,suchasHaarwaveletfeatures[42],gradientbaseddowstoconstructamulti-scaleimagecontextdescripto

5、r,features[6],shapebasedfeatures[34],combinationofmul-designedtorepresentthecontextualcuesinspatial,scaling,tiplefeatures[44,45],automaticallyminedfeatures[10],andcolorspaces.Second,wedevelopaniterativeclassifi-orpose-invariantfeatures[27].Thelocalfeaturesarethencationalgori

6、thmcalledcontextualboost.Ateachiteration,usedtoidentifypedestriansintheclassificationprocessbytheclassifierresponsesfromthepreviousiterationacrossalgorithmssuchasAdaBoost[20].Intheliteraturesthistheneighborhoodandmultipleimagescales,calledclas-processhasbeeneithertargetedatth

7、ehumanfigureasonesificationcontext,areincorporatedasadditionalfeaturesobjectorbasedonpartdetectors.Thepart-basedmethodstolearnanewclassifier.Thenumberofiterationsisde-[15,47,19]treatthehumanfigureasanassemblyofdif-terminedinthetrainingprocesswhentheerrorratecon-ferentbodyparts.

8、Theyrundetectiononindividualpartsverges.Sincetheclassificationcontextincorporatesco

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。