Rapid object detection using a boosted cascade of simple features--viola_cvpr2001

Rapid object detection using a boosted cascade of simple features--viola_cvpr2001

ID:40090879

大小:350.81 KB

页数:8页

时间:2019-07-20

Rapid object detection using a boosted cascade of simple features--viola_cvpr2001_第1页
Rapid object detection using a boosted cascade of simple features--viola_cvpr2001_第2页
Rapid object detection using a boosted cascade of simple features--viola_cvpr2001_第3页
Rapid object detection using a boosted cascade of simple features--viola_cvpr2001_第4页
Rapid object detection using a boosted cascade of simple features--viola_cvpr2001_第5页
资源描述:

《Rapid object detection using a boosted cascade of simple features--viola_cvpr2001》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RapidObjectDetectionusingaBoostedCascadeofSimpleFeaturesPaulViolaMichaelJonesviola@merl.commichael.jones@compaq.comMitsubishiElectricResearchLabsCompaqCambridgeResearchLab201Broadway,8thFLOneCambridgeCenterCambridge,MA02139Cambridge,MA02142Abstracthi

2、ghframerates.OursystemachieveshighframeratesworkingonlywiththeinformationpresentinasinglegreyThispaperdescribesamachinelearningapproachforvi-scaleimage.Thesealternativesourcesofinformationcansualobjectdetectionwhichiscapableofprocessingimagesalsobein

3、tegratedwithoursystemtoachieveevenhigherextremelyrapidlyandachievinghighdetectionrates.Thisframerates.workisdistinguishedbythreekeycontributions.ThefirstTherearethreemaincontributionsofourobjectdetec-istheintroductionofanewimagerepresentationcalledthe

4、tionframework.Wewillintroduceeachoftheseideas“IntegralImage”whichallowsthefeaturesusedbyourde-brieflybelowandthendescribethemindetailinsubsequenttectortobecomputedveryquickly.Thesecondisalearningsections.algorithm,basedonAdaBoost,whichselectsasmallnum

5、-Thefirstcontributionofthispaperisanewimagerepre-berofcriticalvisualfeaturesfromalargersetandyieldssentationcalledanintegralimagethatallowsforveryfastextremelyefficientclassifiers[5].Thethirdcontributionisfeatureevaluation.MotivatedinpartbytheworkofPapa

6、-amethodforcombiningincreasinglymorecomplexclassi-georgiouetal.ourdetectionsystemdoesnotworkdirectlyfiersina“cascade”whichallowsbackgroundregionsofthewithimageintensities[9].Liketheseauthorsweuseasetimagetobequicklydiscardedwhilespendingmorecompu-offe

7、atureswhicharereminiscentofHaarBasisfunctionstationonpromisingobject-likeregions.Thecascadecanbe(thoughwewillalsouserelatedfilterswhicharemorecom-viewedasanobjectspecificfocus-of-attentionmechanismplexthanHaarfilters).Inordertocomputethesefeatureswhichu

8、nlikepreviousapproachesprovidesstatisticalguar-veryrapidlyatmanyscalesweintroducetheintegralim-anteesthatdiscardedregionsareunlikelytocontaintheob-agerepresentationforimages.Theintegralimagecanbejectofinterest.Inthedomainoffacedetectionthesystemcompu

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。