Domain Adaptive Object Detection

Domain Adaptive Object Detection

ID:40602212

大小:2.66 MB

页数:8页

时间:2019-08-04

Domain Adaptive Object Detection_第1页
Domain Adaptive Object Detection_第2页
Domain Adaptive Object Detection_第3页
Domain Adaptive Object Detection_第4页
Domain Adaptive Object Detection_第5页
资源描述:

《Domain Adaptive Object Detection》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DomainAdaptiveObjectDetectionFatemehMirrashed1,VladI.Morariu1,BehjatSiddiquie2,RogerioS.Feris3,LarryS.Davis11UniversityofMaryland,CollegePark2SRIInternational3IBMResearchffatemeh,morariu,lsdg@umiacs.umd.edubehjat.siddiquie@sri.comrsferis@us.ibm.comAbstractWestudythe

2、useofdomainadaptationandtransferlearningtechniquesaspartofaframeworkforadaptiveob-jectdetection.Unlikerecentapplicationsofdomainadap-tationworkincomputervision,whichgenerallyfocusonimageclassification,weexploretheproblemofextremeclassimbalancepresentwhenperformingdom

3、ainadapta-tionforobjectdetection.Themaindifficultycausedbythisimbalanceisthattestimagescontainmillionsorbillionsofnegativeimagesubwindowsbutjustafewpositiveones,whichmakesitdifficulttoadapttothechangesinthepos-itiveclassdistributionsbysimpletechniquessuchasran-Figure1

4、.Anexampleoftheeffectsofdomainchangeforthetaskofvehicledetectionandourimprovedresultsafterdomainadap-domsampling.Weproposeaninitialapproachtoaddresstation.Here,thevehicledetectoristrainedontrainingdata,thethisproblemandapplyourtechniquetovehicledetectionsourcedomain

5、,andisappliedtotestingdata(anewdomain)thatinachallengingurbansurveillancedataset,demonstratingdiffersfromthetrainingdatainvariousways,e.g.,viewingangles,theperformanceofourapproachwithvariousamountsofillumination.Ifwedirectlyapplythetrainedmodeltoanewdo-supervision,

6、includingthefullyunsupervisedcase.main,theconfidencemaphasmultiplepeaks,manyofwhichdonotcorrespondtovehicles.Afterdomainadaptation,thehighestpeakscorrespondtothetwovehiclesintheforeground.(Note:1.IntroductionBackgroundregionshavebeenobfuscatedforlegal/privacyrea-sons

7、)Buildingvisualmodelsofobjectsrobusttoextrinsic1variationssuchascameraviewangle(orobjectpose),reso-lution,lighting,andblurhaslongbeenoneofthechallengesmechanismstotransferoradaptknowledgefromonedo-incomputervision.Generally,adiscriminativeorgenera-maintoanotherrelat

8、eddomain.Whiletheseadvanceshavetivestatisticalmodelistrainedbyacquiringalargesetofex-alsobeenappliedbythecomputervisioncommunitywithamples

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。